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The roles of microRNAs on tuberculosis infection: Meaning or myth? 

 

Abstract 

The central proteins for protection against tuberculosis is attributed to interferon-γ, tumor necrosis factor-α, interleukin 

(IL)-6 and IL-1β, while IL-10 primarily suppresses anti-mycobacterial responses. Several studies found alteration of 

expression profile of genes involved in anti-mycobacterial responses in macrophages and natural killer (NK) cells from 

active and latent tuberculosis and from tuberculosis and healthy controls.  This alteration of cellular composition might be 

regulated by microRNAs (miRNAs). Albeit only 1% of the genomic transcripts in mammalian cells encode miRNA, they 

are predicted to control the activity of more than 60% of all protein-coding genes and they have a huge influence in 

pathogenesis theory, diagnosis and treatment approach to some diseases. Several miRNAs have been found to regulate 

T cell differentiation and function and have critical role in regulating the innate function of macrophages, dendritic cells 

and NK cells. Here, we have reviewed the role of miRNAs implicated in tuberculosis infection, especially related to their 

new roles in the molecular pathology of tuberculosis immunology and as new targets for future tuberculosis diagnostics. 

 

Key words: Mycobacterium tuberculosis, tuberculosis infection, microRNA, tuberculosis immunology.   
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1. Introduction 

Tuberculosis remains a major global health problem, causes morbidity among millions of people each year and ranks as 

the second leading cause of death from an infectious disease worldwide.1 The latest estimates suggest approximately 9 

million new cases and 1.4 million tuberculosis deaths in 2011.1 Both innate and adaptive immune responses are required 

for host control of tuberculosis infection.2,3  In tuberculosis pathogenesis, the host cellular immune response determines 

whether an infection is arrested as latent tuberculosis infection (LTBI) or progresses to the next stages, active 

tuberculosis infection. Efficient cell-mediated immunity frequently keeps tuberculosis infection arrested permanently as 

LTBI, but if an infected person cannot control the initial infection in the lung or if the immune system becomes weakened, 

Mycobacterium tuberculosis (M. tuberculosis) can cause active pulmonary or extra pulmonary tuberculosis.4 

Approximately 90% of infected individuals will remain asymptomatic with LTBI and only 10% of the individuals infected 

with M. tuberculosis will develop active disease, suggesting that host genetics factors play an important role to regulate 

progression of tuberculosis infection.5  

 

MicroRNAs (miRNAs) have been identified as important regulators of gene expression at posttranscriptional level and 

influences many biological systems including mammalian immune systems.6 Hundreds of miRNAs encoded in the 

human genome and thousands of target mRNAs have been shown to be involved in cell development, differentiation, 

proliferation, apoptosis, DNA methylation, DNA repair and provide anti-inflammatory or pro-inflammatory stimuli.7,8 Rapid 

advancement in new miRNAs discoveries has continued the possibility that miRNAs will be associated with the 

regulation of almost every aspect of cell physiology. Subsequent reports have identified that miRNAs are associated with 

non-communicable diseases9-15 and communicable diseases.16,17 In addition, miRNAs have potential uses as biomarkers 

for both non-communicable and communicable diseases.18-23  

 

Previous studies revealed altered gene expression profiles in macrophages and natural killer (NK) cells from active and 

latent tuberculosis, tuberculosis-infected and healthy controls.24-28 This alteration of cellular composition and related 

gene expression in tuberculosis patients is likely regulated by miRNAs. Several miRNAs have been found to regulate T 

cell differentiation and function.29-33 In addition, miRNAs have been found to be important in regulating the innate function 

of macrophages, dendritic cells (DCs) and NK cells.31,34,35  Therefore here we will discuss several miRNAs involved in 

molecular pathology of tuberculosis infection and discuss their potential as tuberculosis biomarkers. 

 

2. Discussion 

2.1 The world of microRNAs: Biogenesis, mechanism of action and biological functions  

The human genome encodes only approximately 20,000 protein coding genes, representing <2% of the total genome 

sequence.36,37 However, with advance technology, it was determined that at least 90% of the genome is actively 

transcribed.38 The human transcriptome was found to be more complex than a collection of protein-coding genes and 

their splice variants; showing extensive antisense, overlapping and non-coding RNA (ncRNA) expression.39,40 NcRNAs 

are grouped into two major classes based on transcript size; small ncRNAs and long ncRNAs.41 The small ncRNAs 

class, which includes miRNAs, ranges in length from 18 to 200 nucleotides (nt).41  miRNAs are a class of approximately 

1000 bioinformatically predicted 22-nt length ncRNAs found in eukaryotes.41  
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All miRNAs are matured and processed through a multistep process that involves several enzymes first in the cell 

nucleus and finally in the cytoplasm. The primary miRNA transcripts are transcribed as a huge double-stranded primary 

transcript called pri-miRNAs by RNA polymerase II which can be several hundreds nt long.31 Pri-miRNAs fold into hairpin 

structures which are polyadenylated and capped. The RNase III-type enzymes Drosha convert this precursor into a 

double-stranded miRNA precursor of 60- to 100-nt hairpins known as pre-miRNAs.42 Pre-miRNAs contain a local stem-

loop structure that encodes miRNA sequences which are exported from nucleus to cytoplasm by exportin 5.43 

 

In cytoplasm, pre-miRNAs are further processed by the RNase III Dicer to yield imperfect 22-nt double-stranded miRNA. 

This unstable duplex consists of the guide strand (miRNA) and the passenger strand (miRNA*). The guide strand miRNA 

is selected to become a mature miRNA, whereas the miRNA* is degraded.44 The mature miRNA is incorporated into the 

RNA-induced silencing complex (RISC), which recognizes specific targets and induces posttranscriptional gene silencing 

which regulates protein expression.45 An alternative biogenesis pathway was recently discovered in which miRNA enters 

RISC by skipping further processing by Dicer. The strand enters RISC by direct loading of the pre-miRNA after Drosha 

processing.46 

 

Specific miRNAs function is defined by the genes it targets and its effect on their expression. Harapan et al.10 

summarizes several mechanisms, direct and indirect, in which miRNAs repress gene translation in cells. Direct on 

translational repression occurs via initiation block or post-initiation block.  In initiation block, the miRISC inhibits 

translation initiation by interfering with eIF4F-cap recognition and 40S small ribosomal subunit recruitment or by 

antagonizing 60S subunit joining and preventing 80S ribosomal complex formation. Post-initiation block includes 

premature ribosomal drop-off, where the 40S/60S ribosomes are dissociated from mRNA, stalled or slowed elongation, 

the 40S/60S ribosomes are prohibited from joining during the elongation process or facilitating proteolysis of nascent 

polypeptides. The indirect on translational repression occurs via mRNA deadenylation and degradation. In addition, it 

has been reported that the majority of miRNA binding sites are in the 3’ untranslated region (3’UTR) of target mRNA 

molecules and this binding leads to the inhibition of mRNA translation and subsequent degradation.47  

 

Malfunction of miRNA regulation is contributed to the fundamental role biological processes and associate with a variety 

of human diseases. Importantly, miRNA dysregulation may contribute to the broader understanding of the human 

pathologies. Abnormalities can occur by the following ways: (1) loss or down regulation of miRNA expression due to 

mutation, epigenetic inactivation, transcriptional down regulation or abnormality processing,48 (2) overexpression of 

miRNA due to gene amplification or transcriptional upregulation may result in the suppressed production of its target 

proteins,49 (3) a mutation in 3’UTR of an mRNA may affect a miRNA binding site and the miRNA may no longer be able 

to bind,50 and (4) a mutation in 3’UTR of a gene may generate a new miRNA binding site.51 A huge number of studies 

reported that miRNAs dysregulation associated to a wide spectrum of diseases such as chronic kidney disease,9 liver 

cirrhosis,14 systemic sclerosis,15 cardiac fibrosis,13 diabetes,11 pregnancy-related diseases,10,52 and most notably 

cancer.12 Recent studies have shown the regulation of miRNA in human diseases only understood and explained by 

genetic (deletions, mutations and translocation), epigenetic mechanisms (methylation) or abnormalities in the miRNA 
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processing machinery. The contributions of this understanding have been implicated in several infectious diseases, 

providing the prospective use of miRNA as clinical biomarkers.53  

 

In bacterial infections, miRNAs have different mechanisms depending on the characteristic of the bacteria. For example, 

Helicobacter pylori (H. pylori) infection alters the expression of oncogenes, tumor suppressor genes and miRNA in the 

host. Interestingly, a study showed that treat of the infection with anti-H. pylori regiment restored decreased expression 

of several miRNAs.16 In Salmonella infection, treatment of immune cells with bacterial lipopolysaccharide (LPS) led to 

induction of several miRNAs. These results indicate that miRNAs play a role in activation of inflammatory factors when 

mammalian cells are target by bacterial pathogens.54 

 

2.2 Immunology aspect of tuberculosis 

Toll-like receptors (TLRs) are the primary receptors in macrophage used to recognize M. tuberculosis and their signals 

can activate nuclear factor κ beta (NF-κB) to induce proinflammatory cytokines release.55,56  Interferon-γ (IFN-γ) and 

tumor necrosis factor-α (TNF-α) are the main pro-inflammatory cytokines central for protection against to tuberculosis 

infection.26,57,58 TNF-α plays a crucial in controlling M. tuberculosis growth in macrophages through several mechanisms 

and has a central role in the establishment and maintenance of LTBI.59-62  IFN-γ is critical for innate and adaptive 

immunity to infection, especially intracellular bacterial infections.63 Indeed, the crucial role of IFN-γ is well established in 

the protection against M. tuberculosis infection in both mouse models and human.64,65  Moreover, studies suggested for 

a protective role of interleukin-6 (IL-6) and IL-1β in host resistance to M. tuberculosis infection,66,67 while IL-10 primarily 

suppresses anti-mycobacterial responses.68 Therefore, M. tuberculosis lately inhibits production of proinflammatory 

cytokines as a survival mechanism.69  

 

In addition, the ability of M. tuberculosis to reside and replicate within phagocytes allow M. tuberculosis to survive in the 

cell. This mechanism avoids immune response of the cell.70 M. tuberculosis successfully invades and parasitizes 

macrophages by inhibiting phagolysosome fusion and neutralizing the acidic environment of the phagolysosomal 

compartment.71 With a neutralized acidic environment, T cells do not respond to antigens.72  

 

2.3 The role of microRNA in tuberculosis  

2.3.1 microRNA regulation of immune response to tuberculosis  

Several studies revealed altered gene expression profiles in macrophages and NK cells from active and latent 

tuberculosis and from tuberculosis and healthy controls.24-28 This alteration of cellular composition and related gene 

expression in tuberculosis patients is likely regulated by miRNAs. Several miRNAs have been found to regulate T cell 

differentiation and function.29-33 In addition, miRNAs have been found to be important in regulating the innate function of 

macrophages, DCs and NK cells.31,34,35 Here we reviewed the roles of several miRNAs in the molecular pathology of 

tuberculosis.   
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2.3.1.1 miRNA-29 

In vitro and clinical studies documented that miR-29 is overexpressed after virulent Mycobacterium species infection in 

several human cell types.11,73,74 miR-29 suppresses immune responses to M. tuberculosis by downregulating IFN-γ.75 

Beside targeting 3`UTR IFN-γ mRNA, miR-29a promotes the association of IFN-γ mRNA with Argonaute 2 (Ago2) 

protein to form an RNA-induced silencing complex and subsequently suppressed the IFN-γ expression 

posttranscriptionally (Figure 1). Moreover, several reports have indicated that miR-29 also targets the antiapoptotic 

proteins B-cell lymphoma 2 (Bcl-2) and myeloid cell leukemia-1 (Mcl-1), the kinase p85α and the GTP-binding protein 

Cdc42,76,77 thus suggesting a central role for miR-29 in regulating the apoptotic pathway in immune cells. Therefore, 

overexpressed miR-29 in tuberculosis infection partly explain one mechanism by which M. tuberculosis avoids 

macrophage digestion through inhibition of IFN-γ and increasing apoptosis of cells involved anti-tuberculosis responses. 

 

Interestingly, a contrasting phenomenon occurred in a non-virulent Mycobacterium species infection model. 

Mycobacterium bovis Bacillus Calmette-Guerin (BCG) downregulated miR-29 expression and induced IFN-γ expression 

in NK cells and T cells.75 This result indicates miR-29 inhibition may have facilitated IFN-γ production by these T cells 

and expression of miR-29 is influenced by Mycobacterium species-specific virulence.   

 

2.3.1.2 miRNA-147 

Previous study shows that miR-147 is induced upon TLRs/NF-κB signaling pathway in macrophages and attenuates 

expression of proinflammatory cytokines, such as TNF-α and IL-6.78  These results indicate that miR-147 has potent anti-

inflammatory properties. Studies found that TNF-α and IL-6 from serum or peripheral blood mononuclear cells (PBMCs) 

were higher in active tuberculosis compared healthy control.79-81 A key study found that miR-147 was overexpressed in 

sputum obtained from active tuberculosis compared with controls.74 Interestingly, this study found the levels of TNF-α 

and IL-6 in sputum did not differ significantly between active tuberculosis group and controls, indicating cytokines 

dysregulation is mainly occurring in the bloodstream as opposed to the lungs.  Altogether, these facts indicate that miR-

147, together with miR-29 enhance anti-tuberculosis immunity and act as a negative regulator of immune response 

against tuberculosis.   

 

2.3.1.3 miRNA-21 

Previous study suggests miR-21 inhibited proinflammatory cytokines expression and promoted an anti-inflammatory 

cytokine, IL-10, production.82 Recent study found that after M. bovis BCG infection, both in vitro and in vivo; miR-21 is 

upregulated in un-sensitized DCs and macrophages through TLR/Erk/NF-κB pathway.83 miR-21 is also upregulated 

following challenge of macrophages with M. tuberculosis early secreted antigenic target 6 kDa protein (ESAT-6) 

antigen.84 miR-21 inhibited IL-12 expression by directly targeting 3`UTR IL-12 mRNA, and thus suppressed host Th1 

responses (Figure 1). In addition, this study also found that miR-21 downregulated the gene of protective cytokines in M. 

tuberculosis infection (TNF-α and IL-6) but these cytokines levels did not change significantly after ESAT-6 exposure. 

Interestingly, miR-21 also promoted DC apoptosis by targeting Bcl-2, which corroborates previous findings suggesting 

that M. tuberculosis can induce apoptosis of infected cells.85 However, the exact mechanism by which miR-21 regulated 

Bcl-2 expression remains unclear. Furthermore, inhibitors of miR-21 induced IL-12 production and triggered more potent 
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anti-mycobacterial responses. Therefore, miR-21 may be an effective strategy Mycobacteria use to escape the host 

immune response and establish chronic infection. 

 

2.3.1.4 miRNA-99b 

In murine DCs from MyD88-deficient mice, exposure to M. tuberculosis but not to LPS induced overexpression of miR-

99b.86 Further analysis found miR-99b blocking (by antagomirs and knockdown approach) resulted in significantly 

reduced M. tuberculosis growth and significantly upregulated proinflammatory cytokines such as TNF-α, IL-6, IL-12, and 

IL-1β. Inhibition of M. tuberculosis growth might be due to an increase in the production of those proinflammatory 

cytokines. In addition, this study found that miR-99b directly targeted tumor necrosis factor receptor superfamily, 

member 4 (TNFRSF-4) and TNF-α mRNA, to regulate expression of various cytokines and transcription factors involved 

in T cell differentiation pathways and M. tuberculosis clearance (Figure 1). Moreover, treatment of anti-miR-99b-

transfected DCs with anti-TNF-α antibody resulted in increased bacterial death. These data confirmed that miR-99b has 

important role in M. tuberculosis growth in DCs by inhibiting TNF-α production, which allows the bacteria to evade host 

protective immune responses and to survive within host phagocytes.   

 

2.3.1.5 miRNA-125b 

Rajaram et al.87 found that human macrophages incubated with M. tuberculosis and it`s component, lipomannan, induce 

high miR-125b expression with correspondingly low TNF production. miR-125b directly targets 3′UTR of TNF mRNA 

transcript, contributing to the inhibition of translation and possibly its accelerated degradation and downregulates TNF 

production. This study also found that only virulent Mycobacterium species limit activation of mitogen-activated protein 

kinase (MAPK) p38 and Akt, two components that contribute significantly to TNF production in mycobacterial-infected 

macrophages compared with avirulent Mycobacterium species.62,88 miR-125b also enhances the stability of κB-Ras2, an 

inhibitor of NF-κB signaling in human macrophages, thereby decreasing the inflammatory response.89 Taken together, 

these results revealed that M. tuberculosis blocks TNF biosynthesis by upregulating miR-125b (Figure 1). In contrast, 

avirulent Mycobacterium species infection and it`s lipomannan exposure downregulated miR-125b expression which 

correlated with high TNF production. Further analysis found that downregulation of miR-125b increased TNF mRNA 

stability and promote proinflammatory response.  

 

FIGURE 1 

 

2.3.1.6 miRNA-155 

miR-155 has been identified as a multifunctional miRNA involved in a number of biologic processes, including infection, 

inflammation, and immunity.90 Previous study showed knockdown miR-155 mouse model, more IL-4 and less IFN-γ were 

produced, suggesting that miR-155 play an important role in regulating T cell–dependent responses.91 One study found 

debatable results regarding dysregulation of miR-155 in human macrophages that are infected by different 

Mycobacterium species.87 In virulent Mycobacterium species infection model, study found that M. tuberculosis infection 

and it`s lipomannan exposure to human macrophages downregulated miR-155 corresponding low TNF production. This 

downregulation mediated upon TLR-MAPK/Akt pathway. Further analysis revealed that M. tuberculosis leads to reduced 
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translation, by inhibiting initiation, and stability of TNF mRNA. However, these result contradict previous study that found 

miR-155 targeted the 3′UTR of the inositol phosphatase SH2-containing inositol 5-phosphatase (SHIP1) mRNA, a 

negative regulator of TNF production, leading to its degradation, therefore increased TNF production.92 The other study 

also found the expression of miR-155 was shown to increase TNF production through increasing mRNA stability and 

half-life.93  

. 

Results conflicting with Rajaram et al.87 from another study88 suggests M. tuberculosis infection (ESAT-6 antigen 

exposure) in murine macrophage also upregulated miR-155. Furthermore, miR-155 attenuates SHIP1 and the 

transcriptional repressor BTB and CNC homology 1 (Bach1). SHIP1 regulate negatively the activation of the 

serine/threonine kinase AKT while Bach1 is a transcriptional repressor of haem oxygenase-1 (HO-1). AKT is required for 

the survival of M. tuberculosis in macrophages,94,95 and HO-1 is an activator of the M. tuberculosis dormancy. Moreover, 

upregulation of miR-155 inhibit the expression of two modulators of the innate immune response - IL-6 and 

cyclooxygenase-2 (Cox-2). Altogether, these evidences revealed that virulent Mycobacterium species infection 

decreased proinflammatory cytokines. In line with this findings, previous study found evidence that hypervirulent M. 

tuberculosis strain elicit reduced levels of proinflammatory cytokines, including TNF-α and IL-6.96 These results 

corroborate that miR-155 was upregulated in virulent Mycobacterium species and likely offers a survival advantage to 

Mycobacterium within its host (Figure 2). In summary, virulent Mycobacterium species infection in human macrophages 

downregulate miR-155 expression, but infection in murine macrophages upregulate miR-155 expression. This 

controversy needs more comprehensive work to understand the similarities and differences in the response of human 

and murine macrophages with regard to miRNA regulation.  

 

In contrast with virulent Mycobacterium, infection of macrophage with avirulent Mycobacterium species enhance miR-

155 and low miR-125 expression with high TNF production.87 They found that miR-155 increased TNF mRNA stability by 

directly targeting inositol phosphatase SHIP1 3′ UTR, a negative regulator of the PI3K/Akt pathway – a pathway involved 

in TNF biosynthesis,92,93 thereby enhancing PI3K/Akt-mediated signaling and TNF mRNA stability.87 Further analysis 

found that avirulent Mycobacterium species stimulated robust and prolonged MAPK activated protein kinase 2 (MK2) 

phosphorylation, a key molecule for TNF mRNA stability.97 Activated MK2 translocates to the cytoplasm and maintains 

TNF mRNA stability through tristetraprolin (TTP) phosphorylation.98  

 

Another comprehensive study revealed evidences regarding the protective role of miR-155 in avirulent Mycobacterium 

species.99 This study demonstrated that M. bovis BCG upregulated miR-155 by activating TLR2, phosphatidylinositol 3-

kinase (PI3K), protein kinase Cδ (PKCδ), and MAPK pathways, which resulted in the participation of NF-κB and c-ETS in 

transcriptional activation of miR-155 promoter. Further study demonstrated that miR-155 regulates protein kinase A 

(PKA) signaling by directly targeting 3`UTR of protein kinase inhibitor alpha (PKI-α), an endogenous inhibitor of PKA 

activity. PKA is one of the effector kinases that regulate a wide array of cellular responses.84 Consequently, enhanced 

activation of PKA signaling directs the generation of PKA C-α, mediates activation of MAPKs and phosphorylation of 

mitogen and stress-activated protein kinase-1 (MSK1) and cyclic AMP response element binding protein (CREB). This 

complex mechanism modulated expression of apoptosis effectors, activation of caspase-3 and translocation of 
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cytochrome c, thus leading to apoptosis of infected macrophages (Figure 2). It is mean that avirulent Mycobacterium 

species could stimulate the macrophage to undergo apoptosis. However, virulent mycobacteria are likely able to inhibit 

apoptosis by altering the Bcl-2 pathway.100 Previous studies showed that apoptosis is an innate defense function of 

macrophages against M. tuberculosis infection. However, virulent Mycobacterium species caused macrophage death by 

a process that proceeds to necrosis, which produces a permeable cell membrane that enables bacteria to escape and 

spread.72,101  

 

FIGURE 2 

 
 
2.3.1.7 miRNA-144* 

miR-144* is overexpressed in active tuberculosis patients.102 miR-144* target genes in Janus kinase/signal transducers 

and activators of transcription (Jak-STAT) signaling pathway, MAPK signaling pathway, TLR signaling pathway and 

cytokine-cytokine receptor interactions. Further transfection of T cell with miR-144* precursor found that miR-144* inhibit 

TNF-α and IFN-γ production. Since TNF-α and IFN-γ have important role in protective immunity, it is possible that miR-

144* influence the development and outcome of tuberculosis. miR-144* possibly in regulates  anti-tuberculosis immunity 

through modification of cytokine production and cell proliferation of T cells.   

 

2.3.1.8 miRNA-223 and miRNA-424 

Wang et al.28 found that miR-223 and miR-424 were highly expressed in PBMCs from patient with active tuberculosis. A 

miR-223 lost function mouse study showed an increased proration of granulocytes, which are morphologically 

hypermature and hypersensitive to activating stimuli, and have more fungicidal activity.103  miR-424 promotes monocyte 

differentiation and subsequently downregulates expression of the transcription factor NFI-A78.104 Wang et al.28 found 

basic leucine zipper transcription factor 2 / BTB and CNC homology 1 (BACH2) and B-cell CLL/lymphoma 7A (BCL7A) 

are targeted by multiple miRNAs that overexpressed in active tuberculosis. Wang et al.28 hypothesize the reduced 

expression level of these two  genes regulated by multiple miRNAs such as miR-223 and miR-424 may lead to a 

disorder in the proportions of T cells and B cells in active tuberculosis patients, which may disturb the delicate balance of 

immune control in M. tuberculosis infection. Wang et al.28 also found that miR-424 targets BACH2, BCL2, BCL7A, and 

forkhead box O1 (FOXO1) that are involved in cellular differentiation and development, to regulate the differentiation of B 

cells to plasma cell.105  

 

2.3.2 microRNA as biomarker for tuberculosis 

Early diagnosis is essential for effective tuberculosis control and therapy. Current diagnostic approaches relies on the 

detection of the pathogen in clinical specimens. However, due to the heterogeneous clinical presentations of M. 

tuberculosis infection (active tuberculosis disease/asymptomatic LTBI; pulmonary and/or extrapulmonary tuberculosis), 

the development of affordable diagnostic tests based on host biomarkers is urgent in order to improve the quality of the 

TB diagnostic process in paucibacillary or not microbiologically confirmed cases (e.g. children, HIV-positive individuals, 

extrapulmonary cases).106  
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In particular, the mechanisms of LTBI and its transition to active tuberculosis remain elusive. Many studies give 

evidences that this transition occur if it cell-mediated immunity fails.107,108 Previous study revealed altered gene 

expression profiles in macrophages and NK cells from active tuberculosis and LTBI.25 Considering that miRNAs have a 

central role in controlling gene expression, they could represent valuable markers to distinguish active tuberculosis and 

LTBI. Despite several studies focused on cellular miRNAs in in vitro infection experiments, only recently extracellular 

(usually referred as “circulating”) miRNAs have raised attention as tuberculosis biomarkers. Sputum, serum, plasma, or 

other body fluid specimens are readily available and amenable to noninvasive analyses for miRNAs. Indeed, circulating 

miRNAs have been extensively investigated as novel and noninvasive diagnostic and prognostic biomarkers for several 

different diseases, including cancer and infections.19-23,109,110 These routinely taken specimens and robust methods of 

detection make miRNAs ideal biomarkers for disease diagnosis.  Here we provide an overview on the potential role of 

both cellular and circulating miRNAs as biomarkers in tuberculosis. 

 

2.3.2.1 miRNA profiling in blood samples  

Among the studies evaluating miRNA profiles from blood as clinical specimens in tuberculosis, two main categories can 

be defined: serum-based studies and cells-based studies. 

 

a. Serum-based study 

Serum miRNAs are present in a stable form that is protected from endogenous RNase activity.19 The first serum-based 

study found that 92 miRNAs were differentially dysregulated in active pulmonary tuberculosis patients compared with 

healthy controls, of which 59 were upregulated and 33 were downregulated.73 Further validation analysis found that miR-

3125 was downregulated while miR-93* and miR-29a were upregulated in active tuberculosis patients. In addition, 

receiver operating characteristic (ROC) analysis was performed to examine if these miRNAs could be used as a 

diagnostic biomarker for active pulmonary tuberculosis. Analysis found that area under the ROC curve (AUC) of miR-29a 

was 0.831 (Table 1), which reflected that miR-29a has great potential as biomarker to detect active pulmonary 

tuberculosis infection. 

 

TABLE 1 

 

Another study found that 97 miRNAs were differentially expressed in active pulmonary tuberculosis patient sera 

compared with healthy control individuals (90 upregulated and 7 downregulated).111  Validation study showed that the 

expression levels of miR-361-5p, miR-889, miR-576-3p, miR-210, miR-26a, miR-432, and miR-134 were upregulated in 

tuberculosis infected individuals. ROC analysis among these miRNAs, three miRNAs (miR-361-5p, miR-889 and miR-

576-3p) were shown to distinguish active tuberculosis patients from uninfected individuals with moderate sensitivity and 

specificity. In addition, combination of these three miRNAs showed an enhanced ability to discriminate between active 

tuberculosis and healthy individuals with AUC value of 0.863 (Table 1). However, the differences between miR-144* and 

miR-29a expression reported by this study did not significantly differ from the expression previously reported.73 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

10 

Only a recent study compared the serum levels of miRNAs from active tuberculosis patients and patients infected by 

Bordetella pertussis, varicella-zoster virus and enterovirus.111 This study documented that three miRNAs (miR-361-5p, 

miR-889, and miR-576-3p) were overexpressed in tuberculosis patients compared to other infection groups. The 

combination of these miRNAs is suitable biomarkers to differentiate tuberculosis from other microbial infections. Further 

analysis found that these miRNAs target several genes involved in immune system development. For instance, miR-361-

5p target SP-1 transcription factor (SP1) that was a key signaling pathway for IL-10 expression in the lung.112 

 

b. Cells-based study 

The first study profiling miRNA expression in PBMCs from active pulmonary tuberculosis patients and healthy controls 

found that 28 miRNAs were upregulated and 2 miRNAs downregulated in active tuberculosis patients.102 miR-144* was 

one of the miRNA upregulated in active tuberculosis patients. miR-144 was the highest upregulated miRNA observed in 

comparison between active tuberculosis and uninfected individuals in whole-blood cellular miRNA analysis.113  

 

Wang et al.28 conducted a study to compare miRNA expression from PBMCs of active tuberculosis patients and healthy 

controls and found that four miRNAs (miR-144, miR-365, miR-133a and miR-424) were upregulated and three miRNAs 

(miR-500, miR-661 and miR-892b) were downregulated in active tuberculosis patients. Further experimentation 

confirmed that gene expression levels of miR-365 and miR-424 remain significantly different between tuberculosis 

infected and healthy control individuals. Using the software package BRB Array Tool, they found four miRNAs (miR-

130a*, miR-493*, miR-520d-3p, miR-661) upregulated and miR-296-5p downregulated in LTBI compared with healthy 

controls. This study assessed also miRNA expression in PBMCs from active pulmonary patients and LTBI.28 They found 

that 6 miRNAs (miR-21*, miR-223, miR-302a, miR-424, miR-451, miR-486-5p) were upregulated and miR-130b* was 

downregulated in active tuberculosis. However, further testing and validation are needed to determine whether miRNAs 

are useful markers to discriminate active tuberculosis and LTBI.   

 

Maertzdorf et al.113 compared miRNAs expression in serum between active tuberculosis and sarcoidosis patients. This 

study found 145 miRNAs expressed in both diseases. Further analysis documented that four miRNAs (miR-182, miR-

355, miR-15b*, and miR-340) were differentially expressed between these two diseases.  From this study we can see, 

both tuberculosis and sarcoidosis revealed highly similar miRNA profiles. Interestingly, the level of miRNA expression 

significantly differed between these two diseases and healthy control groups that is consistent with the view that miRNAs 

are primarily responsible for fine tuning of responses rather than on/ off switch genes regulating expression.114   

 

T cells tend to be at rest in tuberculosis patients, but can be activated by stimulation of specific antigens. Previously, a 

study documented that Mycobacterium antigen can activate sensitized lymphocytes, leading to elevated inflammatory 

cytokine production for instance IFN-γ in tuberculosis patients after M. tuberculosis purified protein derivative (PPD) 

exposure.115 A study comparing the expression profile PPD–induced miRNAs in PBMCs from tuberculosis patients and 

healthy controls using polymerase chain reaction (PCR) found that only miR-155 and miR-155* were upregulated in 

PBMCs from tuberculosis patients.116 In addition, this study found that the AUC value was 0.897 for miR-155 and 0.794 

for miR-155* (Table 1). Based on the highest likelihood ratio, the elicited sensitivity and specificity were 47.62% and 
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94.74% for miR-155, and 42.86% and 94.74% for miR-155*. This implies that miR-155 and miR-155* may specifically be 

upregulated in the early immune response during resensitization by tuberculosis-specific antigens. A recent in vitro study 

found that miR-155 and miR-146a were significantly elevated in human macrophage after M. tuberculosis infection 

compared to uninfected cells.117 miR-155 and miR-146a are induced following stimulation of TLR ligands and release of 

TNF-α and both TLR and TNF-α signaling are important in mounting the immune response to tuberculosis. Previous 

study also found miR-146a is upregulated following challenge of macrophages with M. tuberculosis ESAT-6 antigen.84 In 

contrast, regarding miR-146a, a recent clinical study found that the expression of miR-146a appeared to be decreased in 

PBMCs of active tuberculosis (pulmonary and extrapulmonary) patients compared with healthy controls.81 miR-146a has 

been previously described as a negative regulator of the immune response118,118 and its systemic downregulation may be 

associated with the exacerbated inflammatory response observed in tuberculosis patients.120 In addition this study also 

found a statistically significant increase in the levels of miR-424 in PBMCs from pulmonary tuberculosis patients 

compared with healthy indiveduals.81  

 

2.3.2.2 miRNA profiling in sputum specimens 

Several studies have shown that miRNAs are stably present in sputum.121,122 Moreover, different studies revealed unique 

dysregulation of miRNAs in sputum in non-infectious lung diseases and has role in the assessment of lung disease.123,124  

Yi et al.74  conducted a study to compare miRNA expression in sputum between active pulmonary tuberculosis patients 

and healthy individuals. This study found that a total of 95 miRNAs (43 miRNAs were overexpressed and 52 miRNAs 

were underexpressed) were differentially expressed between tuberculosis infected and healthy individuals, which was 

further supported by cluster analyses indicating a clear distinction between tuberculosis group and healthy individuals. 

Further validation analysis found that miR-19b-2* was underexpressed while miR-3179 and miR-147 were 

overexpressed in the tuberculosis group compared with controls.  Fu and colleagues73 together with serum miRNA 

profiles, analyzed sputum specimens. In this study miR-93* and miR-29a were present in higher abundance in 

tuberculosis sputum in comparison to in healthy individuals, but only miR-29a overexpression was validated via PCR.73  

 

2.3.2.3 miRNA profiling in pleural fluids  

A recent study found that was no alteration in measured miRNAs level between pleural fluids mononuclear cells (PFMC) 

of tuberculosis patients and healthy individuals.81 In addition,  expression of miRNAs were significantly downregulated in 

PFMCs in comparison to PBMCs. The summary of several miRNAs candidate as possible biomarker to discriminate 

tuberculosis patients and healthy person is provided in Table 2.  

 

TABLE 2 

 

2.3.3 The role of microRNA to evaluate tuberculosis treatment  

Previous study found that H. pylori altered several cellular miRNAs and anti-H. pylori treatment restored miRNAs 

expression to normal level.16 The first study to understand the miRNAs expression profile throughout the course of anti-

tuberculosis treatment recently was published.81 In the beginning of treatment, miR-424 was upregulated and miR-164a 

was downregulated in mononuclear cells of tuberculosis patients. This study found that miR-424 and miR-164a was 
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within normal values after two months of tuberculosis treatment. In addition, blood cytokines analysis indicated that 

active tuberculosis patients had elevated amounts of circulating IL-1β and IL-6 in the beginning of treatment which 

decreased upon tuberculosis treatment, as recorded in previous studies.79,80  Positive association between miR-424 and 

IL-6 may be explained because this miRNA promotes monocyte-macrophage differentiation.124 Additionally, the negative 

relationship between miR-146a and IL-6 in this interaction is consistent with the known role of miR-146a downregulating 

NF-κB.35  Data on the effect of anti-tuberculosis therapy on circulating miRNAs or miRNAs in sputum samples are not 

available yet. 

 

3. Conclusion 

There is significant scientific evidence implicating the central role of miRNAs to modulate a new molecular mechanism of 

pathogenesis in tuberculosis infection. In addition, blood, sputum and pleural fluid-based studies revealed evidence for 

the potential roles of specific miRNAs to discriminate tuberculosis infected and healthy individuals, active and latent 

tuberculosis infections, tuberculosis and other infections and pulmonary diseases, and as biomarkers to evaluate 

tuberculosis treatment outcomes. Therefore, miRNAs stand to increase our understanding in pathogenesis of 

tuberculosis, and might be used as new diagnostic strategies for tuberculosis treatment and control in the next decade.  
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Figure 1. The roles of miRNAs in pathology tuberculosis infection. Several studies revealed evidence that 

Mycobacterium species infection in several cell types upregulated miR-99b, miR-144*, miR-29 and miR-125b. These 

miRNAs target several genes that are important in tuberculosis immunity. Upregulated of these miRNAs help 

Mycobacterial to survival inside host cells and enhance anti-tuberculosis immunity by inhibiting production of 

proinflammatory cytokines and inducing IL-10 through several mechanisms.  Abbreviation: 3`UTR: 3`-untranslated 

region, Ago2: Argonaute 2, IFN-γ: Interferon-γ, IL-12: Interleukin 12, IL-1β: Interleukin 1β, IL-6: Interleukin 6, Jak-STAT: 

Janus kinase/signal transducers and activators of transcription, MAPK: mitogen-activated protein kinase, NF-κB: nuclear 

factor κ beta, TLR: Toll-like receptor, TNFRSF-4: tumor necrosis factor receptor superfamily, member 4, TNF-α: tumor 

necrosis factor-α.  
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Figure 2. The role of miR-155 on virulent (green) and avirulent (yellow) Mycobacterium species infection in macrophage. 

Avirulent Mycobacterium species infection upregulates of miR-155 by triggering the TLR2/PI3K/PKCδ/MAPK signaling 

pathways then recruit of NF-κB and c-ETS to miR-155 promoter. miR-155 induces apoptosis of infected macrophage by 

targeting PKI-α 3`UTR thus increases PKA signaling and finally activates of apoptotic effectors, caspase-3, cytochrome c 

translocation. miR-155 also increases TNF production by increasing TNF mRNA stability. To meet this role, miR-155 

directly targeting SHIP1 3′ UTR, a negative regulator of the PI3K/Akt pathway, a pathway involves in TNF biosynthesis 

and enhances MK2 phosphorylation which is a key molecule for TNF mRNA stability.  Conflict results come from virulent 

Mycobacterium infections. Infection in murine macrophage induces miR-155 expression then attenuates the SHIP1 and 

Bach1 expressions therefore promote mycobacterium dormancy and survival in macrophages. Moreover, upregulation of 

miR-155 inhibits the expression IL-6 and cyclooxygenase-2. However, virulent Mycobacterium infection in human 

macrophage downregulates miR-155. Briefly, this condition decrease TNF production by decreasing TNF mRNA half 

time and decreases PI3K/Akt pathway. Abbreviation. 3`UTR: 3`-untranslated region, Cox-2: cyclooxygenase-2, CREB: 

cyclic AMP response element binding protein, MAPK: mitogen-activated protein kinase,  MK2: MAPK activated protein 

kinase 2, MSK1: mitogen and stress-activated protein kinase-1, NF-κB: nuclear factor κ beta, PI3K: phosphatidylinositol 

3-kinase, PKCδ: protein kinase Cδ, PKI-α: protein kinase inhibitor alpha,  SHIP1: SH2-containing inositol 5-phosphatase, 

TLR: Toll-like receptor.   
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Table 1. Receiver operating characteristic analysis of several microRNAs as tuberculosis biomarker to 

discriminate tuberculosis patient and healthy person 

MicroRNAs Specimen  AUC Author 

miR-292 Blood (serum) 0.831 Fu et al.73 

miR-361 

miR-889 

miR-576-3p 

Combination (miR-361, miR-889 and miR-576-3p)  

Blood (serum) 

Blood (serum) 

Blood (serum) 

Blood (serum) 

0.848 

0.765 

0.711 

0.863 

Qi et al.111 

Qi et al.111  

Qi et al.111  

Qi et al.111 

miR-155 

miR-155* 

Blood (PBMC) 

Blood (PBMC) 

0.897 

0.794 

Wu et al.116 

Wu et al.116 

AUC, area under curve; PBMC, peripheral blood mononuclear cell 
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Table 2. Dysregulation of miRNAs to discriminate tuberculosis patient and healthy person 

Specimens  Dysregulation pattern in tuberculosis compare to healthy person Author 

Blood (serum) Up: miR-144* Liu et al.102 

Blood (serum) Up: miR-361-5p, miR-889 and miR-576-3p Qi et al.111 

Blood (serum) 

Blood (serum) 

Blood (PBMC) 

Up: miR-93* and miR-29a 

Down: miR-3125 

Up: miR-424 and miR-365 

Fu et al.73  

Fu et al.73 

Wang et al.28 

Sputum 

Sputum 

Down: miR-19b-2* 

Up: miR-3179 and miR-147 

Yi et al.74 

Yi et al.74 

Sputum Up: miR-29a Fu et al.73 

Blood (PBMC) and PFMC  Down: miR-146a Spinelli et al.81  

PBMC, peripheral blood mononuclear cell; PFMC, pleural fluids mononuclear cell 
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