UNIVERSITAS NAHDLATUL ULAMA SURABAYA LEMBAGA PENELITIAN DAN PENGABDIAN KEPADA MASYARAKAT Kampus A Wonokromo: Jl. SMEA No.57 Tlp. 031-8291920, 8284508 Fax. 031-8298582 — Surabaya 60243 Kampus B RSIJemursari: Jl. Jemursari NO.51-57 Tlp. 031-8479070 Fax. 031-8433670 — Surabaya 60237 Website: unusa.ac.id Email: info@unusa.ac.id ### <u>SURAT KETERANGAN</u> Nomor: 536/UNUSA/Adm-LPPM/VI/2020 Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) Universitas Nahdlatul Ulama Surabaya menerangkan telah selesai melakukan pemeriksaan duplikasi dengan membandingkan artikel-artikel lain menggunakan perangkat lunak **Turnitin** pada tanggal 14 Juni 2020 Judul : The Assessment Of Difference Level Of Tissue Inhibitor Of Metalloproteinase (Timp)-1 From Periodontal Fluid Among **Smokers** Penulis : Mulkan Azhary, Muhammad Amin, Soetjipto Soetjipto, Mulyadi, Sunnati Identitas : Official Journal of the Asian Pacific Society of Respirology 2017 No. Pemeriksaan : 2020.06.14.272 Dengan Hasil sebagai Berikut: ### Tingkat Kesamaan diseluruh artikel (Similarity Index) yaitu 20% Demikian surat keterangan ini dibuat untuk digunakan sebagaimana mestinya Surabaya, 14 Juni 2020 **⊀**etua LPPM, Dr. Istas Pratomo, S.T., M.T. NPP. 16081074 **LPPM Universitas Nahdlatul Ulama Surabaya** Website : Ippm.unusa.ac.id Email : Ippm@unusa.ac.id Hotline : 0838.5706.3867 # Paper 5 by Mulyadi 5 **Submission date:** 14-Jun-2020 02:14AM (UTC+0700) **Submission ID:** 1343183263 File name: talloproteinase_TIMP_-1_from_periodontal_fluid_among_smokers.pdf (181.95K) Word count: 2015 Character count: 10631 ### Respirology 172 Abstracts steady tendency of BE cilia beating frequency decrease (by 13, 15 $\rm {\tiny H}$ 17%, respectively). By the 4th minute the beating frequency was 5.33 ± 1.29 Hz. **Conclusion:** The motion activity of BE cilia is significantly decreased under the influence of hyposmolar stimulus. AP217 #### EFFECTS OF DIESEL EXHAUST PARTICLE IN HUMAN BRONCHIAL EPITHELIAL CELL MIGRATION AND THE INTRACELLULAR SIGNALING PATHWAY YING-JI LI¹, MAIKO KOBAYASHI¹, TAKAKO SHIMIZU¹, YUKIYO HIRATA¹, HIROFUMI INAGAKI¹, ARATA AZUMA², HAJIME KIZAWA³, TOMOYUKI KAWADA¹ Department of Hygiene and Public Health, Nippon Medical School, Tokyo, Japan, ²Department of Pulmonary Medicine/Infection and Oncology, Nippon Medical School, Tokyo, Japan, and ³Department of Respiratory Medicine, Kyorin University Hospital, Tokyo, Japan Background and Aims: Dele exhaust particle (DEP) is the major components of PM2.5. Many studies of molecular mechanisms have focused on the role of reactive oxygen species (ROS) generated directly and indirectly by exposing to DEP. We have confirmed that DEP was involved with induction of epithelial-mesenchymal transition (EMT) cess in human bronchial epithelial cell (HBEC) by oxidative stress. The current study was designed to elucidate the effect of DEP and the intracellular signaling pathway of DEP in the cell migration on HBEC. Methods: We used human bronchial epithelial cell line BET-1A. The cells were plated into 24-well plates in the culture medium (LHC-9). When 90% confluent, in the first experiment, DEP (Standard Reference Material 2975) was treated culture cells with various concentrations to 24-ks; in the second experiment, DEP was treated with 25μg/ml and Gi Protein inhibitor (pertussis toxin solution, PT) or ROC 5 nhibitor (Y-27632) treated with various concentrations for 24hs. The cell layers were "wounded" using a pipette tip. Cultures we 14 pen incubated in basal medium (LHC-D) with 30% LHC-9 for 24hs, after which the cell layers were fixed and stained with May-Gimza. Photomicrographs were taken and then examined cells migration in each group. **Results:** The cells migration was up-regulated by DEP exposure. The stimulation of cells migration by DEP exposure was blocked by PT treatment, however, no effect of Y27632 was observed. **Conclusions:** Our results suggest that DEP might be involved with induction of EMT process in human bronchial epithelial cells, and the stimulation of EMT cells migration by DEP might be mediated by GTP-bir protein signaling pathway. 17-nowledgements: This work was supported by MEXT/JSPS KAKENHI Grant Number 24590764. AP218 # DESTRUCTIVE-CYTOLYTIC ACTIVITY OF BOOCHIAL EPITHELIUM AND ITS INFLUENCE ON THE DEVELOPMENT OF COLD AIRWAY HYPERRESPONSIVENESS IN PATIENTS WITH ASTHMA ALEKSEY B PIROGOV¹, SERGEY V ZINOV'EV², **JULIY PERELMAN¹**, ANNA 3 PRIKHODKO¹, VICTOR P KOLOSOV¹ ¹Far Eastern Scientific Center of Physiology and Pathology of Respiration, Blagoveshchensk, Russian Federation, and ²Amur State Medical Academy, Blagoveshchensk, Russian Federation Background and Aim: The destruction of airway epithelium under the influence of effectors of inflammation in asthmatics with cold airway hyperresponsiveness (CAHR) has not been studied yet. The aim was to study destructive and cytolytic activity of cells of bronchial epithelium in asthmatics in correlation with structural-functional profile of granulocytic segment of bronchial inflammation and to assess its influence on the development of CAHR. **Methods:** FEV₁, airway response (Δ FEV₁) to 3-minute ultrasound inhalation with distilled water (IDW), the contents of myeloperoxidase (MPO, pixels) in the induced sputum (IS), the level of MPO (ng/ml), neutrophilic elastase (NE, ng/ml) and α 1-antitrypsin (AAT, mg/dl) in the blood serum before and after IDW were studied in 36 patients with asthma (mean age 40.6±1.6 years old). **Results:** According to the results of cytological study, 11 patients with low contents of neutrophils in IS (11.5 \pm 1.2%) were included in the 1st group, 25 patients with high contents of neutrophils (37.5 \pm 10 km, p=0.0001) in the 2nd group. The level of asthma control was lower in the 2nd group than in the 1st group (17.1 \pm 0.98 vs. 20.0 \pm 1.0 points of ACT, p=0.05), FEV₁ was lower (89.6 \pm 2.8 vs. 100.2 \pm 3.9%, p=0.04), and the response to IDW was more intensive (Δ FEV₁ -6.5 \pm 1.5% vs. -1.8 \pm 1.9%, p=0.049). In response to IDW the patients of the 2nd group had a decrease of MPO from 267.5 \pm 48.4 till 159.9 \pm 32.8 (p=0.003), of NE from 11.1 \pm 71.8 till 223.1 \pm 41.5 (p=0.004), of AAT from 227.8 \pm 9.7 till 205.1 \pm 12.1 (p=0.042), whereas in the 1st group the values of MPO (170.4 \pm 50.3 vs. 164.0 \pm 59.6), NE (258.9 \pm 86.5 vs. 208.4 \pm 70.3) and AAT (213.8 \pm 11.4 vs. 211.5 \pm 14.5) did not change significantly. **Conclusion:** Activation of neutrophilic component of bronchial inflammation in patients with asthma leads to worsening of the lung function and is concomitant with the decrease of the system level of peroxidase, protease and antiproteolytic activity in response to IDW. AP219 # THE ASSESSMENT OF DIFFERENCE LEVEL OF TISSUE INHIBITOR OF METALLOPROTEINASE (TIMP)-1 FROM PERIODONTAL FLUID AMONG SMOKERS **MULKAN AZHARY^{1,2},** MUHAMMAD AMIN³, SOETJIPTO SOETJIPTO³, MULYADI MULYADI¹, SUNNATI SUNNATI⁴ ¹Faculty (16) edicine-Syiah Kuala University, Banda Aceh, Indonesia, ²Faculty of Medicine-University of Indonesia, Jakarta, Indonesia, ³Faculty of Medicine-Airlangga University, Surabaya, Indonesia, and ⁴Faculty of Dentistry-Syiah Kuala University, Banda Aceh, Indonesia Background and Aim: The periodontium is vulnerably exposed during smoking leading to the extracellular matrix (ECM) destruction due to active activity of proteases. Lowly balanced level of TIMP-1 induces the progression of tissue destruction. This study aimed to assess the difference level of TIMP-1 from gingival crevicular fluid (GCF) in order to evaluate the presumed ECM destruction among smokers, especially ex smokers suffering from COPD. **Methods:** The study included 30 male smokers, of whom 15 were ex smokers suffering from COPD. They underwent the figure examination and spirometry. The criteria of COPD based on post bronchodilator FEV1/FVC < 70% with FEV1% predicted <50 %. Then, the gingival crevicular fluid (GCF) was absorbed by inserting a small piece of filter paper into the gingival sulci. The measungment of TIMP-1 level from GCF used the ELISA method applying R&D system. Abstracts #### Results Table 1. The characteristics of subjects | | Mean (SD) | | | |---------------------|-----------------|----------------------|--| | | Healthy Smokers | Ex Smokers
(COPD) | | | Age (y.o.) | 56,5 (3,09) | 59,5 (5,58) | | | Number of subjects | 15 | 15 | | | Pack year | 34,5 (5,26) | 33,4 (6,47) | | | FEV1/FVC (%) | 81,9 (6,67) | 44,7 (7,36) | | | FEV1% predicted (%) | 79,9 (11,89) | 34,3 (6,38) | | | TIMP-1 (ng/ml) | 24,1 (4,25) | 20,9 (5,27) | | Table 2. The difference of TIMP-1 level from GCF | | Subjects | Mean
(SD) | <i>p</i>
value | |-------------------|---|----------------------------|-------------------| | TIMP-1
(ng/ml) | Healthy Smokers
Ex Smokers
(COPD) | 24,1 (4,25)
20,9 (5,27) | >0.05 | Conclusion: The level of TIMP-1 was elevated among healthy smokers balancing the increase of protease which is naturally essential to reduce the ECM destruction leading to progressive periodontium destruction. The higher level of TIMP-1 was correlated with the smoking pack year which was slightly higher among healthy smokers. The periodontium is more likely sensitive against the continuous smoking exposure. The emphysematous lung parenchyma is likely evaluated through the level of TIMP-1 from sputum, then compared to that from periodontium. AP220 #### ADMIUM-INDUCED ER STRESS AND INFLAMMATION ARE MEDIATED THROUGH C/EBP-DDIT3 SIGNALING IN HUMAN **BRONCHIAL EPITHELIAL CELLS** HYE-RYEON HEO1,2, JEEYOUNG KIM1,2, WOO JIN KIM1,2, SEOK-HO HONG^{1,2} ¹Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea, and ²Environmental Health Center, Kangwon National University Hospital, Chuncheon, South Korea Background and Aims: Cadmium (Cd), a major component of cigarette smoke, disrupts the normal functions of airway cells and can lead to the development of various pulmonary diseases such as chronic obstructive pulmonary disease (COPD). However, the molecular mechanisms involved in Cd-induced pulmonary diseases are poorly understood. Methods: We identified a cluster of genes that are altered in response to Cd exposure in human bronchial epithelial cells (BEAS-2B) and demonstrated that Cd-induced EB stress and inflammation are mediated via CCAAT-enhancer-binding proteins (C/EBP)-DNA-damagedinducible transcript 3 (DDIT3) signaling in BEAS-2B cells. Results: Cd treatment led to marked upregulation and downregulation of genes associated with the cell cycle, apoptosis, oxidative stress and inflammation as well as various signal transduction pathways. Gene set enrichment analysis revealed that Cd treatment stimulated the C/EBP signaling pathway and induced transcriptional activation of its downstream target genes, including DDIT3. Suppression of DDIT3 expression using specific small interfering RNA effectively alleviated Cd-induced ER stress and inflammatory responses in both BEAS-2B and normal primary normal human bronchial epither 10 cells. Conclusions: Ultimately, these data suggest that C/EBP signaling may have a pivotal role in the early induction of ER stress and inflammatory responses by Cd exposure and could be a molecular target for Cdinduced pulmonary diseas Acknowledgment: This research was supported by Global PH.D Fellowship Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (2016H1A2A1909769) ### ANTI-INFLAMMATORY AND ANTI-APOPTOTIC EFFECTS OF POLYDEXYRIBONUCLEOTIDE ON A CUTE LUNG INJURY (LIPOPOLYSACCHARIDE-INDUCED ACUTE LUNG INJURY CHEON WOONG CHOI1, JAE 115 N HWANG1 ¹Department of pulmonology and critical care medicine, Kyung Hee university hospital at Gang-Dong, Seoul, South Korea Background and Aims: Acute lung injury (ALI) is an inflammatory response of the lung to various causes. Beside inflammation, apoptosis is related to tissue damage in ALI mechanism. PDNR is a compound extracted from spermatozoa of salmon. PDRN has showed both antiinflammatory and anti-apoptotic effects. This study was conducted to confirm the possibility of PDRN as a therapeutic agent in agree lung injury. Methods: 36 male SD rats were classified into control group, ALI group, and ALI+PDRN treatment group. ALI was induced by intra-tracheal Lipopolysaccharide ad istration. The PDRN was injected into the abdominal cavity once at a concentration of 8 mg/kg, 1 hour after LPS administration Results: Compared with the control group, in lung tissue, inflammatory makers in ALI group were significant higher in lung tissue (TNF-a (1.00 \pm 0.00 vs. 1.52 \pm 0.08; P=0.001) and IL-6 (3h: 1.00 \pm 0.00 vs. 1.60 \pm 0.14; P=0.003)), and in the BALF (TNF- α (3h: 30.69 \pm 3.07 vs. 3326.31 \pm 162.06 pg/mL; P=0.000) and IL-6 (3h: 35.37 \pm 3.54 vs. 2495.50 \pm 121.58 pg/mL; P=0.000)). Between ALI group and ALI +PDRN treated group, ALI + PDRN treated group showed significant inflammation lowering effect in lung tissue (TNF- α (1.52 \pm 0.08 vs. 1.01 \pm 0.03) and IL-6 (1.60 \pm 0.12 vs. 0.55 \pm 0.02), all P<0.05) and in BALF(TNF- α (3326.31 \pm 162.06 pg/mL vs. 2112.16 \pm 265.92 pg/mL), IL-6(2495.50 \pm 121.58 pg/mL vs. 1545.23 \pm 194.54 pg/mL)and improving pathologic change(Lung injury score ALI 1.62±0.18, ALI-PDRN 1.5±0.16 p<0.02). Percentile of TUNEL positive cells and caspase-3 positive cells were also lower in ALI + PDRN treated group than ALI group. Conclusions: The protective effect of PDRN on ALI may be associated with suppression of both apoptosis and inflammatory responses. Thus, it can be suggested that PDRN might be a potential therapeutic agent for ALI. #### SPIRODELA POLYRHIZA EXTRACT AND ITS CONSTITUENTS CAN MODULATE UPPER AIRWAY SECRETION VIA CALCIUM **ACTIVATED CL- CHANNEL ANO1** WOO KYUNG KIM^{1,3}, JOO HYUN NAM^{2,3}, YU RAN NAM^{2,3} ¹Department of Internal Medicine 8 raduate School of Medicine, Dongguk University, Goyang, South Korea, ²Department of Physiology, Dongguk University College of Medicine, Gyeongju, South Korea, and ³Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang, South korea **ORIGINALITY REPORT** 20% SIMILARITY INDEX 16% INTERNET SOURCES 14 14% 5% PUBLICATIONS STUDENT PAPERS **PRIMARY SOURCES** www.apsr2018.com Internet Source 2% "Special Issue: Abstracts of the 9th International Conference on Environmental Health Science, 2-3 November 2016, Incheon, Republic of Korea", Toxicology and Environmental Health Sciences, 2016 Publication "Poster Abstracts Others-Published Only", Respirology, 11/2005 2% Publication "OXIDANT/ANTIOXIDANT STATUS IN PATIENTS WITH BRONCHIAL ASTHMA", Respirology, 2017 2% Publication Ying-Ji Li, Nobuhiro Kanaji, Xing-Qi Wang, Tadashi Sato et al. "Prostaglandin E2 switches from a stimulator to an inhibitor of cell migration after epithelial-to-mesenchymal transition", Prostaglandins & Other Lipid Mediators, 2015 2% Publication | 6 | www.apsr2013.jp Internet Source | 1% | |----|--|----| | 7 | jtd.amegroups.com
Internet Source | 1% | | 8 | JooHan Woo, Hyun Jong Kim, Yu Ran Nam,
Yung Kyu Kim, Eun Ju Lee, Inho Choi, Sung
Joon Kim, Wan Lee, Joo Hyun Nam. "
Mitochondrial dysfunction reduces the activity of
KIR2.1 K channel in myoblasts impaired
oxidative phosphorylation ", The Korean Journal
of Physiology & Pharmacology, 2018
Publication | 1% | | 9 | "SERUM TENASCIN-C LEVELS IN PATIENTS WITH ASTHMA", Respirology, 2017 Publication | 1% | | 10 | www.tandfonline.com Internet Source | 1% | | 11 | www.accjournal.org Internet Source | 1% | | 12 | suche.thulb.uni-jena.de Internet Source | 1% | | 13 | sinta3.ristekdikti.go.id Internet Source | 1% | | 14 | Tadashi Sato, Xiangde Liu, Hesham Basma,
Shinsaku Togo et al. "IL-4 induces differentiation | 1% | # of human embryonic stem cells into fibrogenic fibroblast-like cells", Journal of Allergy and Clinical Immunology, 2011 Publication | 15 | jsicm2019.jp
Internet Source | 1% | |----|---|----| | 16 | "Poster Presentation - Interstitial Lung Disease : Abstract", Respirology, 2014. Publication | 1% | | 17 | www.researchsquare.com Internet Source | 1% | | | | | Exclude quotes On Exclude matches < 1% Exclude bibliography Off