
 
International Review of Mechanical Engineering (I.RE.M.E.), Vol. 12, N. 11 

 ISSN 1970 - 8734 November 2018 

Copyright © 2018 Praise Worthy Prize S.r.l. - All rights reserved  https://doi.org/10.15866/ireme.v12i11.15758 

928 

Design of Motion Control Using Proportional Integral 
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Abstract – Robotics technology for the defense of a country today is a necessity. One of such 
defense  technologies is an unmanned underwater vehicle or Autonomous Underwater Vehicle 
(AUV). It is a type of underwater robots operated for underwater exploration or underwater 
defense system equipment. AUV is controlled and able to move with six degrees of freedom (6-
DOF). To control AUV requires a motion control system to move as expected. In this research, the 
motion control system was developed by applying a linear 6-DOF model to UNUSAITS AUV, 
resulted from linearization of the nonlinear model with 6-DOF, that is, surge, sway, heave, roll, 
pitch and yaw with Proportional Integral Derivative (PID) method. Specifically, this study is a 
make comparison the simulation between result of PID method and those of Proportional control 
system without integral and derivative was made. The contribution of this paper is numeric study 
regarding the performance of PID compared to proportional applied to AUV linear model. The 
simulation results show that the PID method could be used as the motion control system of the 
linear model 6-DOF with an error of 0.4 % - 13% and globally asymthotically stable with analysis 
of stability using Lyapunov method, whereas the proportional controller still had a considerably 
significant error. Copyright © 2018 Praise Worthy Prize S.r.l. - All rights reserved. 
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Nomenclature 
AUV Autonomous Underwater 

Vehicle 
DOF  Degree of Freedom 
EFF Earth Fixed Frame 
BFF Body Fixed Frame 
PID Proportional Integral Derivative 
휂 = [휂 , 휂 ]  The position and orientation 

vector in the earth-fixed 
coordinates 

휂 = [푥,푦, 푧]  The linear position vector in the 
earth-fixed coordinates 

휂 = [∅,휃,훹]  The angular position vector in 
the earth-fixed coordinates 

푣 = [푣 , 푣 ]  The linear and angular velocity 
vector in the body-fixed 
coordinates 

푣 = [푢, 푣,푤]  The linear velocity vector in the 
body-fixed coordinates 
(surge,sway and heave) 

푣 = [푝, 푞, 푟]  The angular velocity vector in 
the body-fixed coordinates (roll, 
pitch and yaw) 

휏 = [휏 , 휏 ]  The forces and moments acting 
on the vehicle in the body-fixed 
coordinates 

휏 = [푋,푌,푍]  The forces acting on the vehicle 
in the body-fixed coordinates 

휏 = [퐾,푀,푁]  The moments acting on the 
vehicle in the body-fixed 
coordinates 

[푥 ,푦 , 푧 ] The AUV’s center of gravity in 
body fixed coordinates 

퐼 , 퐼 , 퐼  The moments of inertia about 
the X, Y, Z axes respectively 

푓 , 푓 ,푓 ,푓 , 푓 , 푓  Surge, Sway, Heave, Roll, Pitch 
and Yaw for function in 
Jacobian matrix 

푎 ,푎 , … ,푔   Component of matrix A (Result 
of linearization using Jacobian 
matrix for equation of motion 
with 6-DOF) 

퐴 ,퐴 , … ,퐺   Component of matrix B (Result 
of linearization using Jacobian 
matrix for equation of motion 
with 6-DOF) 

푋 ,푌 ,푍 , 
 퐾 ,푀 ,푁  

Hydrostatic force for surge, 
sway, heave, roll, pitch and yaw 

푋 ,푌 ,푁 ,푌 ,푁 ,  
푍 ,푀 ,푀 ,퐾   

Drag force for surge, sway, 
heave, roll, pitch and yaw 

푋 ̇ ,푋 ,푋 ,푋 ,푋  Added Mass for surge 
푌 ̇ ,푌 ̇ ,푌 ,푌 ,푌  Added Mass for sway 
푍 ̇ ,푍 ̇ ,푍 ,푍 ,푍  Added Mass for heave 
퐾 ̇  Added Mass of inertia moment 

for roll 
푀 ̇ ,푀 ̇ ,푀 , 
푀 ,푀  

Added Mass of inertia moment 
for pitch 
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푁 ̇ ,푁 ̇ ,푁 ,  
푁 ,푁  

Added Mass of inertia moment 
yaw 

푁  Body and lift moment 
푁  Fin lift moment 
푌  Body Lift Force and Fin Lift 
푌  Fin Lift Force 
훿  Rudder Angle 

I. Introduction 
Robotics technology for the defense of a country, 

today is a necessity. One of the defense underwater 
technologies is an unmanned underwater vehicle or 
Autonomous Underwater Vehicle (AUV) [1], [2]. AUV 
was first created by Applied Phyics Laboratory (APL) at 
the University of Washington, USA, in the late 1950s 
because of the need for oceanographic data [3]. Some 
AUVs developed include HUGIN AUV, HUGIN 1, and 
REMUS AUV [4], and NPS ARIES AUV was developed 
at the AUV research center [5]. AUV technology has 
developed in several directions [19]-[20]. Its application 
area has expanded gradually, covering areas such as sea 
floor mapping, oceanographic monitoring, underwater 
structural inspection, and underwater defense system 
equipment [6]. Considering the usefulness and benefits 
of AUV above, Indonesia really needs to develop AUV, 
because more than 70% of Indonesian territory is ocean, 
therefore AUV is an effective technology to maintain the 
sea potential of Indonesia. AUV is indispensable to assist 
Indonesia's undersea exploration survey [7], because 
AUV is relatively flexible for ocean exploration without 
having to use cables so that it can swim freely without 
barriers [8]. Several AUV control system studies that 
have been conducted within the period of the 1990s up to 
now can be described as follows. Jalving and Storkersen 
(1994) examined AUV motion control by using 
Proportional Integrator Derivative (PID) focusing on 3 
(three) subsystem speed, steering and diving [9], then Li 
and Lee (2005) used adaptive non-linear control method 
based on Lyapunov theory and backstepping technique 
[10].  

Wu et al (2008) used the Genetic Algorithm (GA) 
method for several AUVs [11]. Oktafianto et al (2015) 
used the Sliding Mode Control (SMC) method on a 6-
DOF linear model [12]. Jebelli et al (2013) used the 
fuzzy controller for design and construction AUV [13]. 

In this research, the motion control system was 
developed by applying a linear 6-DOF model to 
UNUSAITS AUV, resulted from linearization of the 
nonlinear model with 6-DOF, that is, surge, sway, heave, 
roll, pitch and yaw with Proportional Integral Derivative 
(PID) method. Specifically, this study is a make 
comparison the simulation between result of PID method 
and those of Proportional control system without integral 
and derivative was made.  

The contribution of this paper is numeric study 
regarding the performance of PID compared to 
proportional applied to AUV linear model.  

This study began with formulation of equation model 

of non-linear motion with 6-DOF, and it was linearized 
with Jacobi matrix to get the linear model with 6-DOF.  

Then, Proportional Integral Derivative (PID) method 
and the proportional control method were applied to 
control the 6-DOF motion to be stable at the desired set-
point assuming no disturbance at the time of moving 
AUV.  

II. Autonomous Underwater Vehicle 
There are two important things to analyze AUV, the 

axis system consisting of Earth Fixed Frame (EFF) and 
Body Fixed Frame (BFF) as shown in Fig. 1 [3]. EFF is 
used to explain the position and orientation of AUV, 
where the x-axis position leads northward, the y-axis to 
the east and the z-axis toward the center of the earth.  

 

 
 

Fig. 1. AUV motion with six degrees of freedom [15] 
 
While the BFF defines the positive x-axis leading to 

the prowess of the vehicle, the positive y-axis leads to the 
right side of the vehicle, and the positive z-axis points 
downward [14].  

The BFF system is used to explain the speed and 
acceleration of AUV with the starting point at the center 
of gravity. The profile of UNUSAITS AUV is shown in 
Fig. 2.  

 

 
 

Fig. 2. Profile of UNUSAITS AUV [16], [17] 
 
Fig. 1 and Table I show that AUV has six degrees of 

freedom (6-DOF) consisting of surge, sway, heave, roll, 
pitch and yaw. The equation of AUV motion is 
influenced by the outer force as follows:  
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휏 = 휏 + 휏 + 휏 + 휏
+ 휏  (1) 

 
TABLE I 

SPECIFICATION OF UNUSAITS AUV [16], [17] 
Weight 16 kg 

Overall Length 1500 mm 
Beam 200 mm 

Controller Ardupilot Mega 2.0 
Communication Wireless Xbee 2.4 GHz 

Propulsion 12V motor DC 
Propeller 3 Blades OD : 50 mm 

Speed 3.1 knots (1.5m/s) 
 
The movement of UNUSAITS AUV has 6 degrees of 

freedom (6 DOF) consisting of 3 (three) degrees of 
freedom for the direction of translational motion on the 
x-axis (surge), y-axis (sway), and z-axis (heave) and the 
other 3 (three) degrees of freedom for rotational motion 
on x-axis (roll), y-axis (yaw), and z-axis (pitch). The 
UNUSAITS AUV specifications cover, among others, 
weight of 16 kg, length of 1.5 m, a diameter of 20 cm 
[18].  

The general description of AUV with 6 DOF can be 
expressed in the equation [14]:  

 
휂 = [휂 , 휂 ] , 휂 = [푥,푦, 푧]  , 휂 = [∅,휃,훹]  ; 
푣 = [푣 , 푣 ] , 푣 = [푢, 푣,푤] , 푣 = [푝, 푞, 푟]  ; 
휏 = [휏 , 휏 ] , 휏 = [푋,푌,푍] , 휏 = [퐾,푀,푁]  

(2) 

 
in which η shows the vector position and orientation on 
EFF, and, τ denotes the force vector and moment 
working on AUV on BFF, surge (u), sway (v), heave (w), 
roll (p), pitch (q) and yaw (r). The total force and 
moment working on AUV can be obtained by combining 
hydrostatic force, hydrodynamic force and thrust force. 
In this case it is assumed that the diagonal inertia tensor 
(퐼 ) is zero, to obtain the total force and moment of the 
whole model as follows [3]: 
 
Surge: 
 

푚[푢̇ − 푣푟 + 푤푞 − 푥 (푞 + 푟 ) + 푦 (푝푞 − 푟̇)
+ 푧 (푝푟 + 푞̇)]
= 푋 + 푋| | 푢|푢| + 푋 ̇ 푢̇
+ 푋 푤푞 + 푋 푞푞 + 푋 푣푟
+ 푋 푟푟 + 푋  

(3) 

 
Sway : 
 

푚[푣̇ − 푤푝 + 푢푟 − 푦 (푟 + 푝 ) + 푧 (푞푟 − 푝̇)
+ 푥 (푝푞 + 푟̇)]
= 푌 + 푌| | 푣|푣| + 푌 | |푟|푟| + 푌 ̇ 푣̇
+ 푌 ̇ 푟̇ + 푌 푢푟 + 푌 푤푝 + 푌 푝푞
+ 푌 푢푣 + 푌 푢 훿  

(4)

 
Heave : 

푚[푤̇ − 푢푞 + 푣푝 − 푧 (푝 + 푞 ) + 푥 (푟푝 − 푞̇)
+ 푦 (푟푞 + 푝̇)]
= 푍 + 푍| | 푤|푤| + 푍 | |푞|푞|
+ 푍 ̇ 푤̇ + 푍 ̇ 푞̇ + 푍 푢푞 + 푍 푣푝
+ 푍 푟푝 + 푍 푢푤 + 푍 푢 훿  

(5)

 
Roll: 
 

퐼 푝̇ + 퐼 − 퐼 푞푟
+ 푚[푦 (푤̇ − 푢푞 + 푣푝)
− 푧 (푣̇ − 푤푝 + 푢푟)] 퐾
+ 퐾 | |푝|푝| + 퐾 ̇ 푝̇ + 퐾  

(6)

 
Pitch: 
 

퐼 푞̇ + (퐼 − 퐼 )푟푝 + 푚[푧 (푢̇ − 푣푟 + 푤푞)
− 푥 (푤̇ − 푢푞 + 푣푝)]
= 푀 + 푀 | |푤|푤| + 푀 | |푞|푞|
+ 푀 ̇ 푤̇ + 푀 ̇ 푞̇ + 푀 푢푞 + 푀 푣푝
+ 푀 푟푝 + 푀 푢푤 + 푀 푢 훿  

(7)

 
Yaw: 
 

퐼 푟̇ + 퐼 − 퐼 푝푞
+ 푚[푥 (푣̇ − 푤푝 + 푢푟)
− 푦 (푢̇ − 푣푟 + 푤푞)]
= 푁 + 푁 | |푣|푣| + 푁 | |푟|푟|
+ 푁 ̇ 푣̇ + 푁 ̇ 푟̇ + 푁 푢푟 + 푁 푤푝
+ 푁 푝푞 + 푁 푢푣 + 푁 푢 훿  

(8)

III. Linearization 
In this paper the AUV non-linear model can be 

linearized by Jacobi matrix, and the common equations 
of the AUV non-linear model are as follows:  

 
푥̇(푡) = 푓(푥(푡),푢(푡), 푡),푦(푡) = 푔(푥(푡),푢(푡), 푡) (9)
 

and Jacobi Matrix as follows [6]: 
 

휕푓(푥̅,푢, 푡)
휕푥

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
휕푓 (푥̅,푢, 푡)

휕푥
휕푓 (푥̅,푢, 푡)

휕푥 …
휕푓 (푥̅,푢, 푡)

휕푥
휕푓 (푥̅,푢, 푡)

휕푥
휕푓 (푥̅,푢, 푡)

휕푥 …
휕푓 (푥̅,푢, 푡)

휕푥
⋮ ⋮ ⋮ ⋮

휕푓 (푥̅,푢, 푡)
휕푥

휕푓 (푥̅,푢, 푡)
휕푥 …

휕푓 (푥̅,푢, 푡)
휕푥 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 
(10)

 
If Jacobi matrix as expressed in equation (10) is 

implemented to the linearization of AUV equation of 
motion with 6-DOF, then the following equations are 
obtained: 
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휕푓(푥,푢, 푡)
휕푥

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡휕푓 (푥,푢, 푡)

휕푢
휕푓 (푥,푢, 푡)

휕푣
휕푓 (푥,푢, 푡)

휕푢
휕푓 (푥,푢, 푡)

휕푣

휕푓 (푥,푢, 푡)
휕푤

휕푓 (푥,푢, 푡)
휕푝

휕푓 (푥,푢, 푡)
휕푤

휕푓 (푥,푢, 푡)
휕푝

휕푓 (푥,푢, 푡)
휕푞

휕푓 (푥,푢, 푡)
휕푟

휕푓 (푥,푢, 푡)
휕푞

휕푓 (푥,푢, 푡)
휕푟

휕푓 (푥,푢, 푡)
휕푢

휕푓 (푥,푢, 푡)
휕푣

휕푓 (푥,푢, 푡)
휕푢

휕푓 (푥,푢, 푡)
휕푣

휕푓 (푥,푢, 푡)
휕푤

휕푓 (푥,푢, 푡)
휕푝

휕푓 (푥,푢, 푡)
휕푤

휕푓 (푥,푢, 푡)
휕푝

휕푓 (푥,푢, 푡)
휕푞

휕푓 (푥,푢, 푡)
휕푟

휕푓 (푥,푢, 푡)
휕푞

휕푓 (푥,푢, 푡)
휕푟

휕푓 (푥,푢, 푡)
휕푢

휕푓 (푥,푢, 푡)
휕푣

휕푓 (푥,푢, 푡)
휕푢

휕푓 (푥,푢, 푡)
휕푣

휕푓 (푥,푢, 푡)
휕푤

휕푓 (푥,푢, 푡)
휕푝

휕푓 (푥,푢, 푡)
휕푤

휕푓 (푥,푢, 푡)
휕푝

휕푓 (푥,푢, 푡)
휕푞

휕푓 (푥,푢, 푡)
휕푟

휕푓 (푥,푢, 푡)
휕푞

휕푓 (푥,푢, 푡)
휕푟 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (11)

 
Equations (3)-(8) can be changed into 

푓 , 푓 ,  푓 ,  푓 ,  푓 , 푓  as follows: 
 

푓

=

푋 + 푋| | 푢|푢| + 푋 푤푞 + 푋 푞푞 + 푋 푣푟 +
푋 푟푟 + 푋 −

푚[−푣푟 + 푤푞 − 푥 (푞 + 푟 ) + 푝푞푦 + 푝푟푧 ]
푚 − 푋 ̇

 

(12) 

 
푓

=

푌 + 푌| | 푣|푣| + 푌 | |푟|푟| + 푌 ̇ 푟̇
+푌 푢푟 + 푌 푤푝 + 푌 푝푞 + 푌 푢푣 +

푌 푢 훿 −
푚[−푤푝 + 푢푟 − 푦 (푟 + 푝 ) + 푞푟 푧 + 푝푞 푥 ]

푚 − 푌 ̇
 

(13) 

 

푓 =

푍 + 푍| | 푤|푤| + 푍 | |푞|푞| +
푍 ̇ 푞̇ + 푍 푢푞 + 푍 푣푝 + 푍 푟푝 +

푍 푢푤 + 푍 푢 훿 −
푚[−푢푞 + 푣푝 − 푧 (푝 + 푞 ) + 푟푝 푥 + 푟푞 푦 ]

푚 − 푍 ̇
 

(14) 

푓 =

퐾 + 퐾 | |푝|푝| + 퐾 −

퐼 − 퐼 푞푟 + 푚 푦 (−푢푞 + 푣푝) −
푧 (−푤푝 + 푢푟)

퐼 − 퐾 ̇
 

(15)

 

푓 =

푀 + 푀 | |푤|푤| + 푀 | |푞|푞| + 푀 ̇ 푤̇
+푀 푢푞 + 푀 푣푝 + 푀 푟푝 +

푀 푢푤 + 푀 푢 훿 −

(퐼 − 퐼 )푟푝 + 푚 푧 (−푣푟 + 푤푞)
−푥 (−푢푞 + 푣푝)

퐼 − 푀 ̇
       

(16)

 

푓 =

푁 + 푁 | |푣|푣| + 푁 | |푟|푟| + 푁 ̇ 푣̇
+푁 푢푟 + 푁 푤푝 + 푁 푝푞 +

푁 푢푣 + 푁 푢 훿

− 퐼 − 퐼 푝푞 + 푚 푥 (−푤푝 + 푢푟)
−푦 (−푣푟 + 푤푞)

퐼 − 푁 ̇
     

(17)

 

The linear model can be obtained as follows [2]: 
 

푥̇(푡) = 퐴 푥(푡) + 퐵푢(푡),푦(푡) = 퐶푥(푡) + 퐷푢(푡) (18)
 

with: 
 
 
퐴 = 퐽

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 1            0              0

0            1              0

0            0              1

0
푚푧

푚 − 푋 ̇

−푚푦
푚 − 푋 ̇

−
푚푧
푚 − 푌 ̇

0
(푚푥 − 푌 ̇)
푚 − 푌 ̇

푚푦
푚 − 푍 ̇

−
푚푥 + 푍 ̇

푚 − 푍 ̇
0

0 −
푚 푧
퐼 − 퐾 ̇

푚 푦
퐼 − 퐾 ̇

푚 푧
퐼 − 푀 ̇

0 −
(푚 푥 + 푀 ̇ )
퐼 − 푀 ̇

−
푚푦
퐼 − 푁 ̇

(푚푥 − 푁 ̇ )
퐼 − 푁 ̇

0

1            0              0

0            1              0

0            0              1
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
푎 푏 푐
푎 푏 푐
푎 푏 푐

   푑 푒 푔
   푑 푒 푔
   푑 푒 푔

푎 푏 푐
푎 푏 푐
푎 푏 푐

   푑 푒 푔
   푑 푒 푔
   푑 푒 푔 ⎦

⎥
⎥
⎥
⎥
⎤
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퐵 = 퐽

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 1            0              0

0            1              0

0            0              1

0
푚푧

푚 − 푋 ̇

−푚푦
푚 − 푋 ̇

−
푚푧
푚 − 푌 ̇

0
(푚푥 − 푌 ̇)
푚 − 푌 ̇

푚푦
푚 − 푍 ̇

−
푚푥 + 푍 ̇

푚 − 푍 ̇
0

0 −
푚 푧
퐼 − 퐾 ̇

푚 푦
퐼 − 퐾 ̇

푚 푧
퐼 − 푀 ̇

0 −
(푚 푥 + 푀 ̇ )
퐼 − 푀 ̇

−
푚푦
퐼 − 푁 ̇

(푚푥 − 푁 ̇ )
퐼 − 푁 ̇

0

1            0              0

0            1              0

0            0              1
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
퐴 퐵 퐶
퐴 퐵 퐶
퐴 퐵 퐶

   퐷 퐸 퐺
   퐷 퐸 퐺
   퐷 퐸 퐺

퐴 퐵 퐶
퐴 퐵 퐶
퐴 퐵 퐶

   퐷 퐸 퐺
   퐷 퐸 퐺
   퐷 퐸 퐺 ⎦

⎥
⎥
⎥
⎥
⎤

 

 

퐶 =

⎣
⎢
⎢
⎢
⎢
⎡
1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1⎦

⎥
⎥
⎥
⎥
⎤

 

 
and: 

퐷 = 0 

IV. Computational Result 
Before the application a PID control system, the 

system was tested without a controller with a block 
diagram of Matlab simulink as shown in Figs. 3 and 4. 

After the block diagram was formed, the results of the 
AUV system simulation without a control system was 
seen in Figs. 5 and 6. The design of PID control system 
was made to overcome the instability of translational and 
rotational motions of AUV. Here is a block diagram of 
AUV using PID and proportional control system in Fig. 
7. The method used to determine the proportional, 
integral and derivative values was a trial and error 
method. 

 
 

Fig. 3. Block diagram of AUV 

 
 

Fig. 4. Block diagram of AUV subsystem 
 

 
 

Fig. 5. Responses of the translational motion  
of AUV without control system 

 
In the PID simulation, some comparisons between 

simulation result of the PID and those of the proportional 
controller were made. Here are the proportional, integral 
and derivative values of both PID and proportional 
control. After the block diagram was formed, the 
simulation was carried out. We got the simulation results 
of AUV system with PID control system. Discussion on 
the comparison of the responses of the control systems 
by PID and proportional control was made as the block 
diagram made and simulated resulting in the responses of 
the translational motion (surge sway, heave) as shown by 
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Figs. 8 and those of the rotational motion (roll, pitch and 
yaw) as shown by Figs. 9. 

 

 
 

Fig. 6. Responses of rotational motion of AUV without control system 
 

 
(a) 

 

 
(b) 

 
Figs. 7. Block Diagram of AUV using (a) PID method  

and (b) Proportional method Control System 
 

TABLE II 
PROPORTIONAL, INTEGRAL AND DERIVATIVE VALUES OF  BOTH PID 

CONTROLLER AND PROPORTIONAL CONTROLLER 
 PID Proportional 
 퐾  퐾  퐾  퐾  퐾  퐾  

Surge 10 1.8 3 2.4 0 0 
Sway 2 8 2 2.05 0 0 
Heave 3 1.5 2 2.05 0 0 
Roll 2 1.2 0.01 2.05 0 0 
Pitch 4 1 0.01 2.2 0 0 
Yaw 2 1 0.01 2.3 0 0 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Figs. 8. The results of the simulation by both PID and Proportional 

Control System for (a) surge, (b) sway and (c) heave 
 
In the comparison of the surge responses in Figure 

8(a), the result shows that the surge responses by the PID 
were more stable at a set-point of 1 m/s, managed to 
reach a settling time of 80 seconds with a maximum 
overshoot of 3.4 m / s, and had an error of 4.2%. While 
in Figure 8(b), the result shows that the sway responses 
by the PID were more stable at setpoint of -1 m / s, 
managed to reach a settling time of 76 seconds with 
maximum overshoot of -3.4 m / s, and had an error of 
12%. And in Figure 8(c), the result shows the heave 
responses by the PID were more stable at setpoint of -1 
m / s, managed to reach a settling time of 80 seconds 
with maximum overshoot of -3,6 m / s, and had an error 
of 13%. For the responses by the PID in surge, sway, and 
heave motion, the results show the responses were 
unstable and did not reach a settling time at the setpoint. 
In this case, overshoot was not the main priority setting 
for autonomous platform performance. The preferred 
ones were the settling time and the resulting error. The 
simulation results for rotational motion can be seen in 
Figs. 9. In the comparison of the roll responses in Fig. 
9(a), the result of the simulation by PID shows that the 
roll responses were more stable at setpoint of 1 rad/s, 
managed to reach a settling time of 40 seconds with 
maximum overshoot of 1.2 rad/s, and had an error of 
0.4%. While in Fig. 9(b), the result shows that the pitch 
responses by the PID were more stable at setpoint of -1 
rad/s, managed to reach a settling time of 70 seconds 
with maximum overshoot of -2.8 rad/s, and had an error 
of 8.9%. In Fig. 9(c), the result shows that yaw responses 
by PID were more stable at set-point of -1 rad/s, 
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managed to reach a settling time of 60 seconds with 
maximum overshoot of -3.4 rad/s, and had an error of 
5.8%. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Figs. 9. The result of the simulation by both PID and Proportional 

Control System for (a) roll, (b) pitch, and (c) yaw 
 
For responses by proportional controller in roll, pitch, 

and yaw, the results show that the responses were not yet 
stable and did not reach a settling time at set-point. The 
comparison of delay time, rise time, peak time, 
maximum overshoot, settling time, and error shows 
responses of each by either PID or proportional controller 
for translational motion, that is, surge, sway and heave 
can be seen in Table III.  

 
TABLE III 

SPECIFICATIONS OF THE TRANSIENT RESPONSES IN SURGE, 
SWAY, AND HEAVE MOTIONS 

 Surge Sway Heave 
 PID Proportional PID Proportional PID Proportional 

Delay 
Time (s) 1.6 1.8 1.2 2.6 1.6 1.5 

Rise Time 
(s) 1.8 2.2 1.5 3 1,8 1.8 

Peak Time 
(s) 3 3 2 3.5 2.8 2.2 

Maximum 
Peak (s) 3.4 4.2 -3.4 -3.5 -3.6 -3.8 

Settling 
Time (s) 80 s Inf 80 inf 80 inf 

Error  (%) 4,2 Inf 12 inf 13 inf 
 

Based on the response comparison, it could be 
concluded that the best control system for AUV shall rely 
on the error and settling time observation. The 

specification comparison between the transient responses 
in surge by PID and those by proportional controller in 
Table III shows that the results by proportional controller 
had an error of infinity due to the inability to be stable.  

Those by PID had an error of 4.2 %. For sway motion, 
the results by proportional controller had an error of 
infinity due to the inability to be stable, and those by PID 
had an error of 12%. For heave motion by proportional 
controller, the results show an error of infinity due to the 
inability to be stable, while those by PID had an error of 
15%. The specification comparison between the transient 
responses in roll motion by PID and those by 
proportional controller in Table IV shows that the results 
by proportional controller had an error of infinity due to 
the inability to be stable, whereas those by PID had an 
error of 0.4 %. For pitch motion, the results by 
proportional controller had an error of infinity due to the 
inability to be stable, whereas those by PID had an error 
of 8.9 %. For heave motion by proportional controller, 
the results show an error of infinity due to the inability to 
be stable, whereas those by PID had an error of 5.8 %. 

 
TABLE IV 

SPECIFICATION OF THE TRANSIENT RESPONSES IN ROLL, 
PITCH, AND YAW MOTIONS 

 Roll Pitch Yaw 
 PID Proportional PID Proportional PID Proportional 

Delay 
Time (s) 1.05 1 2.2 2.2 1.25 1.2 

Rise Time 
(s) 1.3 1.1 2.5 2.5 1.4 1.4 

Peak Time 
(s) 2.8 3 3.8 3.5 2.8 2.5 

Maximum 
Peak (s) 1.2 1.3 -2.8 -3.2 -3.4 -3.4 

Settling 
Time (s) 40 Inf 70 inf 60 Inf 

Error (%) 0,4 Inf 8,9 Inf 5,8 Inf 

V. Stability Analysis 
Analysis of Stability, for PID method, employing 

Lyapunov stability analysis, shall meet 1 definition and 2 
theorema as follows.  

Definition 1. Function 푉(푥) is said to be a Lyapunov 
function if on a ball 퐵 , 푉(푥) is positive definite and has 
a partial derivative of negative semi definite 푉̇(푥) ≤ 0 

Theorem 1. If on a ball 퐵 , there is a scalar function 
푉(푥)of which the first partial derivative is continuous in 
which: 
1. 푉(푥) is positive definite (local on 퐵  ) 
2. 푉̇(푥) negative semi definite (local on 퐵 ) 

Then the system equilibrium point is stable, if 푉̇(푥) is 
negative definite (local on 퐵 ). Then the system is 
asymptotically stable. 

Theorem 2. If on a ball 퐵 , there is a scalar function 
푉(푥) of which the first partial derivative is continuous in 
which:  
1. 푉(푥) is positive definite (local on 퐵  ) 
2. 푉̇(푥)is negative semi definite (local on 퐵  ) 
3. 푉(푥) → ∞ and‖푥‖ → ∞ 
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Then the system equilibrium pouint is globally, 
asymptotically stable. 

Candidate Function of Lyapunov for AUV linear 
system with 6-DOF is: 

 

푉(푢, 푣,푤,푝, 푞, 푟) =
1
2
푢 +

1
2
푣 +

1
2
푤 +

1
2
푝

+
1
2
푞 +

1
2
푟  

(19) 

 
Showing that the function: 

 

푉(푢, 푣,푤,푝, 푞, 푟) =
1
2
푢 +

1
2
푣 +

1
2
푤 +

1
2
푝 +

1
2
푞

+
1
2
푟  

 
is a Lyapunov function conforming to definition 1 and 
the stability criteria in accordance with Theorem 1 and 
Theorem 2. The candidate Lyapunov function in equation 

(19) will be proved that the candidate function with the 
SMC control system in the linear model is Lyapunov 
function and asymptotically stable. 
1. For 

(푢, 푣,푤,푝, 푞, 푟) = (0,0,0,0,0,0), 푉(푢, 푣,푤,푝, 푞, 푟) =
0, whereas for (푢, 푣,푤,푝, 푞, 푟) ≠ (0,0,0,0,0,0),
푉(푢, 푣,푤,푝, 푞, 푟) > 0.  
It is proved that 푉(푢, 푣,푤,푝, 푞, 푟) positive definite 

2. Function 푉 is continuous and has its first partial 
derivative mwhich is continuous on 푆. Function  
푉(푢, 푣,푤,푝, 푞, 푟) = 푢 + 푣 + 푤 + 푝 +

푞 + 푟  is a quadratic function, it is clear that the 
quadratic function is continuous. Then the partial 
derivative is also continuous.  

3. 푉̇(푢, 푣,푤,푝, 푞, 푟) = 푢̇ + 푣̇ + 푤̇ + 푝̇ +

푞̇ + 푟̇ 
 

 
푉̇(푢, 푣,푤,푝, 푞, 푟) = 푢푢̇ + 푣푣̇ + 푤푤̇ + 푝푝̇ + 푞푞̇ + 푟푟̇ (20)

 
푉̇(푢, 푣,푤,푝, 푞, 푟) = 푢 푎푎  푢 +  푏푏  푣 + 푐푐  푤 + 푑푑  푝 + 푒푒  푞 + 푔푔  푟 + 퐴퐴 푋 + 퐵퐵  훿 + 퐶퐶 훿

+ 퐷퐷 퐾 + 퐸퐸  훿 + 퐺퐺 훿 ) + ⋯ 

푣 푎푎  푢 +  푏푏  푣 + 푐푐  푤 + 푑푑  푝 + 푒푒  푞 + 푔푔  푟 + 퐴퐴 푋 + 퐵퐵  훿 + 퐶퐶 훿 + 퐷퐷 퐾 + 퐸퐸  훿
+ 퐺퐺 훿 ) + ⋯  

푤 푎푎  푢 +  푏푏  푣 + 푐푐  푤 + 푑푑  푝 + 푒푒  푞 + 푔푔  푟 + 퐴퐴 푋 + 퐵퐵  훿 + 퐶퐶 훿 + 퐷퐷 퐾 + 퐸퐸  훿
+ 퐺퐺 훿 ) + ⋯ 

푞 푎푎  푢 +  푏푏  푣 + 푐푐  푤 + 푑푑  푝 + 푒푒  푞 + 푔푔  푟 + 퐴퐴 푋 + 퐵퐵  훿 + 퐶퐶 훿 + 퐷퐷 퐾 + 퐸퐸  훿
+ 퐺퐺 훿 ) + ⋯ 

푟 푎푎  푢 +  푏푏  푣 + 푐푐  푤 + 푑푑  푝 + 푒푒  푞 + 푔푔  푟 + 퐴퐴 푋 + 퐵퐵  훿 + 퐶퐶 훿 + 퐷퐷 퐾 + 퐸퐸  훿
+ 퐺퐺 훿 ) 

(21)

 
choosing: 

푋 = 퐾 푢 + 퐾
1
2

 푢 + 퐾 푢̇ 

훿 = 퐾 푣 + 퐾
1
2

 푣 + 퐾 푣̇ 

훿 = 퐾 푤 + 퐾
1
2

 푤 + 퐾 푤̇ 

퐾 = 퐾 푝 + 퐾
1
2

 푝 + 퐾 푝̇ 

훿 = 퐾 푞 + 퐾
1
2

 푞 + 퐾 푞̇ 

훿 = 퐾 푟 + 퐾
1
2

 푟 + 퐾 푟̇ 
 

so that the following eq. (22) are obtained: 
 

푉̇(푢, 푣,푤,푝, 푞, 푟) = 푢
푎푎  푢 +  푏푏  푣 + 푐푐  푤 + 푑푑  푝 + 푒푒  푞 + 푔푔  푟 + 퐴퐴 퐾 푢 + 퐾 1

2 푢
1 − 퐴퐴  퐾

+
퐵퐵  훿 + 퐶퐶 훿 + 퐷퐷 퐾 + 퐸퐸  훿 + 퐺퐺 훿

1 − 퐴퐴  퐾
+ ⋯ 
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푣
푎푎  푢 +  푏푏  푣 + 푐푐  푤 + 푑푑  푝 + 푒푒  푞 + 푔푔  푟 + 퐴퐴 푋

1 − 퐵퐵  퐾

+
퐵퐵  퐾 푣 + 퐾 1

2 푣 + 퐶퐶 훿 + 퐷퐷 퐾 + 퐸퐸  훿 + 퐺퐺 훿
1 − 퐵퐵  퐾

+ 

푤
푎푎  푢 +  푏푏  푣 + 푐푐  푤 + 푑푑  푝 + 푒푒  푞 + 푔푔  푟 + 퐴퐴 푋

1 − 퐶퐶  퐾

+
퐵퐵  훿 + 퐶퐶 퐾 푤 + 퐾 1

2 푤 + 퐷퐷 퐾 + 퐸퐸  훿 + 퐺퐺 훿
1 − 퐶퐶  퐾

+ 

푝
푎푎  푢 +  푏푏  푣 + 푐푐  푤 + 푑푑  푝 + 푒푒  푞 + 푔푔  푟 + 퐴퐴 푋

1 − 퐷퐷  퐾

+
퐵퐵  훿 + 퐶퐶 훿 + 퐷퐷 퐾 푝 + 퐾 1

2 푝 + 퐸퐸  훿 + 퐺퐺 훿
1 − 퐷퐷  퐾

+ 

푞
푎푎  푢 +  푏푏  푣 + 푐푐  푤 + 푑푑  푝 + 푒푒  푞 + 푔푔  푟

1 − 퐸퐸 퐾

+
퐴퐴 푋 + 퐵퐵  훿 + 퐶퐶 훿 + 퐷퐷 퐾 + 퐸퐸  퐾 푞 + 퐾 1

2 푞 + 퐺퐺 훿
1 − 퐸퐸 퐾

+ 

푟
푎푎  푢 +  푏푏  푣 + 푐푐  푤 + 푑푑  푝 + 푒푒  푞 + 푔푔  푟

1 − 퐺퐺 퐾

+
퐴퐴 푋 + 퐵퐵  훿 + 퐶퐶 훿 + 퐷퐷 퐾 + 퐸퐸  훿 + 퐺퐺 퐾 푟 + 퐾 1

2 푟
1 − 퐺퐺 퐾

 

Since the value of 1 − 퐴퐴  퐾 < 0, 1 − 퐵퐵  퐾 <
0, 1 − 퐶퐶  퐾 < 0 , 1 − 퐷퐷  퐾 < 0, 1 − 퐸퐸 퐾 <
0 dan 1 − 퐺퐺 퐾 < 0, then it is obtained that 
푉̇(푢, 푣,푤,푝, 푞, 푟) ≤ 0. 

Meeting the condition above  and the requirements by 
Theorem 1, then the function is as follows: 

 

푉(푢, 푣,푤,푝, 푞, 푟) =
1
2
푢 +

1
2
푣 +

1
2
푤 +

1
2
푝 +

1
2
푞

+
1
2
푟  

 
is a Lyapunov function and asymtotically stable.  

In Theorem 2 there is one requirement 푉(푥) → ∞ with 
‖푥‖ → ∞  if fulfilled, the Lyapunov function is globally, 
asysmthotically stable. Lyapunov Function above is: 

 

푉(푢, 푣,푤,푝, 푞, 푟) =
1
2
푢 +

1
2
푣 +

1
2
푤 +

1
2
푝 +

1
2
푞

+
1
2
푟  

 
It will be proved that: 
 

푉(푢, 푣,푤,푝, 푞, 푟) → ∞ 
with: 

‖푢‖ → ∞, ‖푣‖ → ∞, ‖푤‖ → ∞, ‖푝‖ → ∞, ‖푞‖ → ∞, ‖푟‖
→ ∞ 

Since: 
 

푉(푢, 푣,푤,푝, 푞, 푟) =
1
2
푢 +

1
2
푣 +

1
2
푤 +

1
2
푝 +

1
2
푞

+
1
2
푟  

 
is quadratic function, so if ‖푢‖ → ∞, ‖푣‖ → ∞, ‖푤‖ →
∞, ‖푝‖ → ∞, ‖푞‖ → ∞ and ‖푟‖ → ∞, then 
푉(푢, 푣,푤,푝, 푞, 푟) → ∞. So, Lyapunov Function: 

 

푉(푢, 푣,푤,푝, 푞, 푟) =
1
2
푢 +

1
2
푣 +

1
2
푤 +

1
2
푝 +

1
2
푞

+
1
2
푟  

 
is globally asymthotically stable 

VI. Conclusion 
Based on the computational results and discussion on 

the design of the Proportional, Integral, and Derivative 
(PID) Control System, regarding the linear model of 6-
DOF, it can be concluded that the PID method can be 
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used as a motion control system of  6-DOF linear model 
with a significant accuracy. For translational motions 
(surge, sway and heave) the PID method has an error of 
0.4% - 8.9%, and for rotational motions (roll, pitch and 
yaw) it has an error of 4.2% - 13%. Whereas, the 
Proportional control remains to have a considerably big 
error. If viewed in term of its stability analysis, the PID is 
considered globally asymptotically stable by employing 
Lyapunov method of stability analysis. In Conclusion, 
the PID method can be used as the motion control system 
of AUV. 
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