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Abstract. Indonesia consists of seventy percents of sea such that Indonesia has much marine
resource. For exploring marine resource, it is required Autonomous Underwater Vehicle
(AUV) with its control. In AUV, there are surge, sway, heave position and roll, pitch, yaw
angle which have to be controlled. PID (Proportional-Integral-Derivative) control has been
developed in many control system problems. In previous research, the tuning of PID
parameters such as Kp, Ki, and Kd has been applied by Ziegler-Nichols technique. In this
research, the optimization of PID parameters will be approached by heuristic methods such as
Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO). PSO is inspired by
the flock of birds or fishes in food search while ACO is inspired by the cooperative behavior of
ant colonies, to find the shortest path from their nest to the food source. Either particle in PSO
or path consisting pheromone in ACO represents PID parameters and the fitness function is
integral of absolute error (IAE). Based on simulations, heuristic methods can result responses
with small overshoot and fast rise time and settling time.

Introduction
ndonesia consists of seventy percents of sea such that Indonesia has much marine resource. For
exploring marine resource, it is required Autonomous Underwater Vehicle (AUV) with its control. In
AUV, there are linear motions : surge, sway, heave position, and angular rotations : roll, pitch, yaw
angle. Both angle and position have to be controlled for resulting stable AUV. The controls for the
AUV are rudder for controlling surge and roll, fin for controlling sway, heave, pitch, and yaw [2], [4],
SI1E8)-

PID (Proportional-Integral-Derivative) control has been developed in many control system
problems [3]., [9]. PID g@ntrol works by tuning parameters proportional gain, integral gain, and
derivative gain [7], [18]. In previ research, the tuning of PID parameters such as proportional gain,
integral gain, and derivative gain has been applied by Ziegler-Nichols technique [18]. In this research,
the optimization of PID parameters will be approached by heuristic methods [16] such as Particle
Swarm Optimization (PSO) and Ant @plony Optimization (ACO). Both PSO and ACO have been
applied in optimization [10], [11], [12] and control problem [13], [14].
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garticle Swarm Optimization (PSO) was discovered by Kennedy and Eberhart in 1995. PSO is
inspired by the behavior of flocks of birds, swarm of insects. or school of fish in which individuals are
called particles and the population is called a swarm. The PSO is initialized with a group of random
candidate solutions as a swarm of particles. Each particle is given initial position and velocity. When
particle finds a direction to the source of food, other particles will follow them [6].

Ant Colony Optimization (ACO) is optimization method which is inspired by behavior of ant
colony which can find the best path from nest to food source. This method was discovered by Dorigo
in 1990. At the early time, ants start to travel from their home to food source by selecting path
randomly. Before returning to their home, ants deposit pheromone on path which has visited. After
returning to their home, pheromone information is updated based evaporation rate. At the optimization
process, pheromone is updated until all ants choose the similar path as the best path [1].

The simulations are applied by two heuristic methods : PSO and ACO. After PSO and ACQO obtain
optimized PID parameters in pitch angle and heave position, the parameters will be used for creating
response curve of pitch angle and heave position. From the response, we can compute rise time, peak
time, maximum overshoot, settling time, and integral of absolute error (IAE) as objective function
(fimess function).

2. Mathematical Model of AUV

In AUV, there are six degrees of freedom : surge, sway, heave, roll, pitch, and yaw. In linear motions,
there are surge, sway and heave. Surge, sway, and heave are linear motions in x-axis, y-axis, and z-
axis respectively. In angular rotations, there are roll, pitch and yaw. Roll, pitch, and yaw are angular
rotations in x-axis, y-axis, and z-axis respectively. Model of AUV can be seen on figure 1.
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Figure 1.AUV model with six degrees of freedom

Based Newton Law, the mathematical model of AUV can be constructed as follows [17] :

4

X:m[a&—w‘+wq—x5(ql +r3)+ys(pq—ﬁ')+zs(pr +L})] (1)
Y:m[¢+ur—wp +)c6(p4gf+J"')—y6(p1 +r?) +z;(gr— f))] (2)
Z =m|jw—uq+vp+xﬁ(pr—¢})+yﬂ(qr +,r'))—zg(p2 +q3)] (3)

K=Ip+( ~1)qr+I (pr—q¢)-1_ (g —r)—1_(pq+r)+m(y,0v—ug+vp)— z,(v-+ur —wp)) (4)
M =1_‘q+(1_\_ —]:)pr—l\__‘ (gr + p)—]_‘_:(pq—i')—]_‘:(p! —rg)-m(xn(\'v—uq-v-w))—zG(Li —vr+wq)) (5

(5]
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N=Ir+ (1_‘ -1 )pg— J"__‘_(_.')2 —qg)— I_‘_:(pr +q)+1 _(gr— ;})+m(.\‘n(£'+ur —wp) =y (t—vr+ wq)) (6)

Where the parameters are m is mass of AUV, I I .1 are moment of inertia at x-axis, y-axis, and

z-axis respectively, X.V,.Z; are longitudinal, athwart,and vertical position of center of gravity
respectively. The others are :

X : surge force X surge position u : surge velocity
Y : sway force ¥ : sway position v: sway velocity

Z : heave force z : heave position w : heave velocity
K : roll moment ¢ roll angle p :roll rate

M : pitch moment 8 pitch angle q : pitch rate

N : yaw moment y : yaw angle r:yaw rate

In this reseach, the problem is restricted for linear motion and angular rotation. Only equation (3)
and (5) will be used. By ignoring surge, sway, roll and vaw, the variables become
v=r=p=@=y =y=0. The stateas decision variables are pitch angle @, pitch velocity g, heave

position z, dan heave velocity w.

Hydrodynamics of AUV can be explained as follows :
In pitch moment equation, consider equation (5) :

M=I1g+I ~I)pr—1 (qgr+p)—1 _(pg—i)—1I (p*—r’)—m(x;00—ug +vp)— 7, (i —vr +wg))
By ignoringsurge, sway, roll and yaw, the variables becomev=r = p ==y = y=0. Pitch moment
M can be expanded as M =M _g+M g+ My +M w, then pitch moment equationbecomes :

M,g+M g+ Mpw+M w=1 g—nxw+mxuq +mzwq (7

with M, is added mass moment of inertia due to pitch rate, M, is added mass moment of inertia due to

heave velocity, M, iscoefficient of pitch moment induced by pitch rate, M is coefficient of pitch

moment induced by heave velocity.

The added (z,W — z, )@ in right sideandfin as control unit M & thenstate equationin pitch
momentbecomes :

(M, —1)q+ (M +mx, W= (z W —2,)0 +mxguq+mzowg—M g —M w+M;o (8)

In heave force equation, consider equation (3) :

Z = m|Vo—uq-+vp+ X, (pr—q)+ yo (qr+ P)~2o(p* +q°) |

By ignoringsurge, sway, roll and yaw, the variables becomev=r=p=¢ = =y =0. Heave force Z
can be expanded as Z = ZGg+Zg+Zw+Zw, then heave force equation becomes :

Z.Gg+Z g+Z W+ Z w=mw—mug —mx.q - q (9)
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with Z, is added mass due to pitch rate, Z_is added mass due to heave velocity, Z_ is coefficient of

heave force induced by pitch rate, Z _is coefficient of heave force induced by heave velocity.
The added fin as control unit Z;0 then state equationin heave forcebecomes :
(Z, +mx;)q +(Z, —m)Ww=—mug —mzq -Z,q-Zw—2,6 (10}

From equation (8) and (10),we obtain nonlinear system and the statespace model of AUV is :

O=q (1

(M, —1)q+ (M +mx, W= (z W —2,)8+mx uq+mz,wqg—M g—M w+M,5 (12)
z=wcos@—usind (13)

(Z, +mx;)q +(Z, —m)Ww=—mugq —mzq -Z,q-Z w—2,0 (14)

Using linearizationsin @ = &,cos @ = 1 and using Jacobian near equilibrium point

(@ .q .,z ,w)=(0,0,0,0) then state space model in linear system is:

1 0 0 0 g 0 1 0o 0 2] 0
0 (M,-1) 0 (M +mx;)| g _ (zW—24) —(M —mxu) 0 -M, || g N ~Z, 5 1)
0 0 1 0 3 —ut 0 0 | z M,
0 (Z,+mx;) 0 (Z,—m) W 0 ~(Z,+mu) 0 -Z ||lw 0

3. PID Control
The PID control was patented in 1939 by Albert Callender and Allan Stevenson [9]. PID controller has

been applied in many control problems. PID control works by tuning parameters X ,, K, K, where

d?

K, is proportional gain, K, is integral gain, and K, is derivative gain.

3.1. Close Loop Transfer Function
The block diagram of closed loop transfer function can be seen on figure 2 with R(s) is reference,

E(s) is error, ¥(s) is output, K(s) is controller, and G(s) is plant. In PID, we can develop

K, +K,s with K, is proportional gain, K, =—~ is integral gain, and K, =K T, is

K(s)=K,+

i

derivative gain [1], [4].
Based on block diagram, the closed loop transfer functionis :

R(s) 1+ K(5)G(s) (16)
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Figure 2.Close Loop Transfer Function

3.2. Close Loop PID Algorithm
Using parameters K, K,., K, the close loop PID algorithm for computing Integral of Absolute

Error (IAE) with given plant is as follows [7] :
1. Given plant in equation (17) and equation (18) as system output :

x=Ax+Bu (17
y=Cx (18)

2. Form transfer function G(s)=C(s[ —A)'B

3. Form closed loop transfer function

Y(s)  K($)G(s)

. K
= , with K(y) = i s
Rs) 11 K5)Goy K=K, K (19)

withPID parameters are : K, is proportional gain, Kk, = —Z is integral gain, and K, =K T, is

i

derivative gain.

4. Compute Y(s) with unit step response R(s)= 1
s

Determine response y(f) using inverse Laplace transform y(1) = L' '(¥Y(s))
Compute error signal e(f) = r(t)— y(t) = 1— y(1)

IAE (Integral of Absolute Error) can be computed numerically

J'Ie(.')ldr =hi|e(;‘)l (20)

i=i)
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3.3. Characteristic of Response
The transient response of a practical control system often exhibits damped oscillations before
reaching steady state [7]. The response curve y(t)to a unit step input, has characteristic as follows :

Rise timey, : the time required for the response to rise to 100% of its final value.
&:ak time 1, the time required for the response to reach the first peak of the overshoot.
Maximum overshoot M : the maximum peak value of the response curve measured from unity.

Maximum percent overshoot can be computed from equation (21).

y(t,) = y()

Maximum percent overshoot =
()

x100% 1)

Settling time ¢, : the time required for the response curve to reach and stay within a range about the

final value of size specified by absolute percentage of the final value (usually 2% or 5%)

4. Heuristic Method
In heuristic method, the optimization problem is finding PID parameters :ﬁ:, K,, K, minimizing

Integral of Absolute Error (IAE) as objective function (fitness function). The optimization of PID
parameters will be approached by heuristic methods such as Particle Swarm Optimization (PSO) and
Ant Colony Optimization (ACO). PSO is inspired by the flock of birds or fishes in food search while
ACO is inspired by the cooperative behavior of ant colonies, to find the shortest path from their nest to
the food source. Either particle in PSO or path consisting pheromone in ACO represents PID
paratemeters with the fitness function is integral of absolute error (IAE).

4.1. Particle Swarm Optimization (PSO)
PSO algorithm can be constructed as follows [15] :
1. Based on Routh-Hurwitz stability,generate initialization particle position x*(0),
k =12,... .max_swarm
2. Generate initialization particle velocity v* (0), k = 1,2,...,max_swarm
a Set local best particle p* =x*(0), k =1.2.....max_swarm
4. Set global best particle g = arg min( f(p*).k =12... max_swarm)
P

5. Update particle along time t.
fort =0 : max_t
fork =1: max_swarm
- Calculate the particle velocity v*(f +1)
VEE+D) =wvE (1) +en (pt —x* () + e, (g — x5 () (22)

- Update the particle position x*(¢+1)
X+ =x @ +via+D (23)

- Calculate the fitmess of particle f(x*(r+1))
- Update local best particle p *

p' =arg min (U F O, L) e, fOE ), f (1)) (24)
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end
Update global best particle g,

g=argmin(f(p*).k =12,..max_ swarm) 25)

P
end

4.28p4nt Colony Optimization (ACO)
CO algorithm can be constructed as follows [15] :
1. Set the number of ants N and the pheromone decay factor p .

2. Generate max pop feasible solutionsbased onRouth-Hurwitz stability, and give the probability

in equation (27) based on fitnessin equation (26).

1

Sitness, = m, k=1,2,...max pop (26)
p(X*)= _ fimess, k=12, .max pop
s pop
Z fitness, @7

k=1

Calculate cumulative probability range C,

Generate random variable r, ~ D) s=12...N.

Determine selected variable X* k €{1,2,...,max pop}and for every ant s .

Calculate objective function f(X"*) forevery ant s .

B B Em

Choose minimum fitness function f, =min (f(X‘).k eq{l,2,...,max pop}) .and count N, .

the number of f,
8. Set constant @ and calculate ZAT()(Jt ). k=1,2,....max pop

E :AT[X") _ Nbg“'fbi' if X* is the best variable 28)
est
0, otherwise

9. Update the pheromone based on equation (29)
7, =(1-p)r, +ZA1'(X" ) k=1,2,...,max pop (29)

10. Update the pheromone probabilitybased on equation (30)

p(xi-): l].r sk =1,2,...,max pop 30)
"

11. Repeat step 3-10 until all ants choose the best path consisting pheromone and process
converges.
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5. Results
State space model used in PID simulations as in equation (31) and (32) :

IZi 0 0 1 olfe 0
w| 00175 -1273 3559 Oflw . 0.085 31
g -0052 1273 -2661 0|l g| [21.79 (1)
2 -5 1 0 0| z 0
I
Y I 00 Of|w
= (32)
vl |0 0 0 1]g¢q

The simulations are applied by two heuristic methods : PSO and ACO. After PSO and ACQO obtain
optimized PID parameters in pitch angle and heave position, the parameters will be used for creating
response curve of pitch angle and heave position. Optimal response curve has mininum IAE signed by
fast settling time and rise time, and minimum overshoot.

5.1. PSO Simulation

Parameters used in PSO simulation are : the number of population is 5 and maximum iteration as
stopping criteria is 31. Optimization process of PSO can be seen figure 3 and figure 4. Figure 3 shows
optimization process of PSO on pitch angle and optimal IAE is resulted by PID parameters :
K, =1896,K,=1.773,K, =0.637. Figure 4 shows optimization process of PSO on heave position and

optimal IAE is resulted by PID parameters : K =-0,603.K, =-1,561,K, = —1,339.

Pitch Heave Pasitia
027 |'tt ’“"‘ﬂﬂ‘ T 0.54 e
026 — D53 =00 —
028 - 0.52 -
-z R S W SR O 4 | R R W AR SO 4
2 ° 4
023 0s
. T S U U A TP SO 4 B b 4
e 7 - CHOO00P00009000090000§00 0060
CoOooooPOOoOPOOoDGO000R0 : H H H H H
0.2 L L L L L L 0.47 - . i : L "
0 5 10 15 20 25 30 35 L] 5 0 15 20 25 k] 35
1 1
Figure 3. Optimization process of PSO on Figure 4, Optimization process of PSO on
pitch angle heave position

PID parameters will be applied in response curve. Figure 5 shows pitch angle response curve with
optimized PID parameters from PSO with rise time is 0.6, peak time is 1.9, maximum overshoot is
0.0317, and settling time is 0.3. Figure 6 shows heave position response curve with optimized PID
parameters from PSO with rise time is 0.1, peak time is 0.2, maximum overshoot is 0.7513, and
settling time is 2.3,




ICCGANT 2018 IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 1211 (2019) 012039  doi:10.1088/1742-6596/1211/1/012039

14 - - - - - - 18 T T T T T
H : : H | : response response
- i ! : i : : ] rafarnce 16} referance

L T SO S -
! T e T (o S DI S S -
= 08 :2 1
g E
5_ 06 g 1 £ B S A S S T
Y| Uk T T U SO SO NN UORN SN S i
| I
[11-] T P R a
I N I I i L -
N1 T 3 4 5 & 7 & + % 1 2 3 4+ & & 71 & 8 1
t t
Figure 5. Pitch angle response curve with Figure 6. Heave position response curve with
optimized PID parameters from PSO optimized PID parameters from PSO

5.2, ACO Simulation

Parameters used in ACO simulation are : the number of population is 100, the number of ant is 5,
pheromone decay factor is 0.01 and maximum iteration as stopping criteria is 30. Optimization process
of ACO can be seen figure 7 and figure 8. Figure 7 shows optimization process of ACO on pitch angle
and optimal IAE is resulted by PID parameters : K =1918,K, =1.872,K, =0.970. Figure 8 shows

optimization process of ACO on heave position and optimal IAE is resulted by PID parameters :
K,=-0,181,K, = -0214,K, = ~1323.

Pitch Anghe Haave Position

0.26 == T T T 0.53 T T T
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[ | IO SR . R e
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0.2 i L 04
0 10 15 20 2 30 ] 5 10 3 20 25 30

t t
Figure 7. Optimization process of ACO on pitch  Figure 8. Optimization process of ACO on pitch
angle angle

PID parameters will be applied in response curve. Figure 9 shows pitch angle response curve with
optimized PID parameters from ACO with rise time is 1.0, peak time is 2.1, maximum overshoot is
0.0328, and settling time is 0.2. Figure 10 shows heave position response curve with optimized PID
parameters from ACO with rise time is 0.1, peak time is 0.2, maximum overshoot is 0.7134, and
settling time is 1.9,
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Figure 9. Pitch angle response curve with Figure 10. Pitch angle response curve with
optimized PID parameters from ACO optimized PID parameters from ACO

6. Conclusion
In PID model, Integral of Absolute Error (IAE) asobjective function is determinedby X, K,, K,

andgenerally, theyare determinedby trial and error so thatoptimization process is required. PID
parameters can be approached by heuristic methods : PSO and ACO. From the simulation, PSO and
ACO can optimize PID parameters and result response curve. From the response curve, we can
compute rise time, peak time, maximum overshoot, settling time, and integral of absolute error (IAE)
as objective function (fitness function). The best IAE has characteristic : fast settling time and rise
time, and minimum overshoot. Developments of this research are optimizing PID parameters for other
lincar motions : surge and sway and other angular rotations : roll and yaw to result more complex
AUV control system.
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