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Abstract. A thruster is a device used for station keeping, attitude control, in the reaction
control system, or long-duration, low-thrust acceleration. Thruster is one of the main
components in autonomous surface vehicle. In this paper, we discuss the linearization of two-
state thruster model by using the Jacobian method.

1. Introduction
A thruster is a device used in many equipments including Autonomous Surface Vehicle (ASV)
for station keeping, attitude control, in the reaction control system, or long-duration, low-thrust
acceleration. The thruster pushes the ASV so that the ASV can move to the desired position.
In order to design a controller for thruster, we need the mathematical model of thruster. There
are many papers in the literature that discuss the thruster model, such as [1, 2, 3, 4, 5].

In this paper, we focus on the two-state thruster model developed in [3]. The thruster model
is a nonlinear ordinary differential equation. Usually, designing a controller for nonlinear systems
is not easy task. As such, in this paper, we discuss the linearization of the thruster model by
using Jacobian method. In Section 2, we desribe the two-state thruster model in [3]. Then in
Section 3, we discuss the linearization of the two-state thruster model. We use two conditions for
linearization: tunnel thruster test and open-bladed thruster test. After obtaining the linearized
two-state thruster model, we are planning to continue this work to the navigation and stability
[6], state estimation [7, 8], control design [9, 10, 11, 12].

2. Two-state Thruster Models
The thruster model in [3] has two state variables, i.e. ωm and Ua

ω̇m = f1(ωm, Ua, Vs, U0) = −K1ωm +K2Vs −KhQ, (1)

U̇a = f2(ωm, Ua, Vs, U0) = −K4K
−1
3 Ua|Ua|+K−1

3 T, (2)

where the input variables are Vs and U0. The expressions for ωm and Ua are denoted by
f1(ωm, Ua, Vs, U0) and f2(ωm, Ua, Vs, U0), respectively. In this model, the output variable T is
given by

T = g(ωm, Ua, Vs, U0) = Lift(cos θ)−Drag(sin θ). (3)
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The expressions for other variables and parameters in the model are as follows

Q = 0.7R(Lift(sin θ) + Drag(cos θ)), (4)

Ua = Ua − U0, (5)

Lift = 0.5ρV 2ACLmax sin(2αe), (6)

Drag = 0.5ρV 2ACDmax(1− cos(2αe)), (7)

θ = p− αe, (8)

αe =
(π

2
− p
)
− arctan

(
Ua

Up

)
, (9)

V 2 = U2
p + U2

a , (10)

Up =
0.7Rωm

N
, (11)

K3 = ρALγ, (12)

K4 = ρA∆β. (13)

The interpretation of each variable and parameter in the model is as follows:

Table 1. Variables and parameters in the thruster model.

Q propeller torque (Nm) ωm motor rotational rate (rad/sec)
N reduction gear ratio Up propeller velocity (m/s)
R propeller radius (m) αe effective angle of attack (rad)
p blade pitch (rad) Ua section average flow velocity (m/s)
Up propeller velocity (m/s) ρ mass density of water (kg/m3)
A tunnel cross sectional area (m2) Lift lift force (N)
Drag drag force (N) T thrust force (N)
θ angle of inlet to blades (rad) L tunnel length (m)
γ effective added mass ratio ∆β momentum coefficient
U0 vehicle velocity (m/s)

3. Linearization of the Thruster Model
In this section, we linearize the state and output equations in the thruster model (1)-(3). The
thruster model is linearized around constant solution, i.e. ωm and Ua are constant functions.
Because both ωm and Ua are constants, we obtain ω̇m = 0 and U̇a = 0. By substituting ω̇m = 0
to (1), we have

−K1ωm +K2Vs −KhQ = 0, (14)

ωm =
K2Vs −KhQ

K1
. (15)

In order to obtain ωm as a constant function, the input Vs has to be a constant function that
can be chosen arbitrarily. Next, U̇a = 0 is substituted to (2), as follows

−K4K
−1
3 Ua|Ua|+K−1

3 T = 0 (16)
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(Ua − U0)|Ua − U0| =
T

K4
(17)

Ua =

 U0 +
√

T
K4
, if T

K4
≥ 0,

U0 −
√

T
K4
, if T

K4
< 0.

(18)

Since Ua is a constant function, the input U0 must be a constant function which can be chosen
freely. Then we determine the the Jacobian matrix of the system (1)-(3). As a first step, we
determine the partial derivative of f1, f2 and g w.r.t. state variable ωm. More precisely, we
compute ∂f1

∂ωm
, ∂f2
∂ωm

and ∂g
∂ωm

:

∂f1
∂ωm

= −K1 −Kh
∂Q

∂ωm
, (19)

∂f2
∂ωm

=
1

K3

∂g

∂ωm
, (20)

∂g

∂ωm
= cos θ

∂Lift

∂ωm
− Lift(sin θ)

∂θ

∂ωm
− sin θ

∂Drag

∂ωm
−Drag(cos θ)

∂θ

∂ωm
, (21)

∂Q

∂ωm
= 0.7R

(
sin θ

∂Lift

∂ωm
+ Lift(cos θ)

∂θ

∂ωm
+ cos θ

∂Drag

∂ωm
−Drag(sin θ)

∂θ

∂ωm

)
, (22)

∂Lift

∂ωm
= 0.5ρACLmax

(
sin(2αe)

∂

∂ωm
(V 2) + 2V 2 cos(2αe)

∂αe

∂ωm

)
, (23)

∂Drag

∂ωm
= 0.5ρACDmax

(
(1− cos(2αe))

∂

∂ωm
(V 2) + 2V 2 sin(2αe)

∂αe

∂ωm

)
, (24)

∂θ

∂ωm
= − ∂αe

∂ωm
, (25)

∂αe

∂ωm
=

Ua

U2
p + U2

a

∂Up

∂ωm
, (26)

∂

∂ωm
(V 2) = 2Up

∂Up

∂ωm
, (27)

∂Up

∂ωm
=

0.7R

N
. (28)

Then, we compute the partial derivative of f1, f2 and g w.r.t. state variable Ua. More
specifically, we determine ∂f1

∂Ua
, ∂f2
∂Ua

and ∂g
∂Ua

:

∂f1
∂Ua

= −Kh
∂Q

∂Ua
, (29)

∂f2
∂Ua

= −2K4K
−1
3 |Ua|+K−1

3

∂g

∂Ua
, (30)

∂g

∂Ua
= cos θ

∂Lift

∂Ua
− Lift(sin θ)

∂θ

∂Ua
− sin θ

∂Drag

∂Ua
−Drag(cos θ)

∂θ

∂Ua
, (31)

∂Q

∂Ua
= 0.7R

(
sin θ

∂Lift

∂Ua
+ Lift(cos θ)

∂θ

∂Ua
+ cos θ

∂Drag

∂Ua
−Drag(sin θ)

∂θ

∂Ua

)
, (32)

∂Lift

∂Ua
= 0.5ρACLmax

(
sin(2αe)

∂

∂Ua
(V 2) + 2V 2 cos(2αe)

∂αe

∂Ua

)
, (33)

∂Drag

∂Ua
= 0.5ρACDmax

(
(1− cos(2αe))

∂

∂Ua
(V 2) + 2V 2 sin(2αe)

∂αe

∂Ua

)
, (34)
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∂θ

∂Ua
= −∂αe

∂Ua
, (35)

∂αe

∂Ua
= − Up

U2
p + U2

a

, (36)

∂

∂Ua
(V 2) = 2Ua, (37)

∂Up

∂Ua
= 0. (38)

Next, we calculate the partial derivative of f1, f2 and g w.r.t. input variable Vs, i.e. we
compute ∂f1

∂Vs
, ∂f2
∂Vs

and ∂g
∂Vs

:

∂f1
∂Vs

= K2,
∂f2
∂Vs

= 0,
∂g

∂Vs
= 0. (39)

Finally, we determine the partial derivative of f1, f2 and g w.r.t. input variable U0. More
precisely, we calculate ∂f1

∂U0
, ∂f2
∂U0

and ∂g
∂U0

:

∂f1
∂U0

= 0,
∂f2
∂U0

= 2K4K
−1
3 |Ua|,

∂g

∂U0
= 0. (40)

3.1. Tunnel Thruster Test
In this subsection, we determine the linear system obtained by using the parameters used in the
tunnel thruster test [3]. The parameters are shown in Table 2.

Table 2. Parameters for the tunnel thruster test.

CLmax = 1.75 K1 = 70.15 A = 0.00445 m2

CDmax = 1.2 K2 = 1133.2 D = 0.0762 m
∆β = 0.2 Kh = 17.790 R = D/2 m
γ = 0.5 K3 = 0.954 L = 0.4191 m

K4 = 0.910 N = 2
ρ = 998 kg/m3

p = π/6 rad

After substituting the parameters to the linearized system, we obtain the following linear
system: [

ω̇m

U̇a

]
=

[
−70.7 1.2
−2.1 −14.8

] [
ωm

Ua

]
+

[
1133.2 0

0 1.9

] [
Vs
U0

]
, (41)

T =
[
−2.03 −12.2

] [ωm

Ua

]
+
[
0 0

] [Vs
U0

]
(42)

3.2. Open-Bladed Thruster Test
In this subsection, we determine the linear system obtained by using the parameters used in the
open-bladed thruster test [3]. The parameters are displayed in Table 3.
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Table 3. Parameters for the open-bladed thruster test.

CLmax = 2 K1 = 10.8 A = 0.00445 m2

CDmax = 0.5 K2 = 0.65 D = 0.15 m
∆β = 1.7 Kh = 8333 R = D/2 m
γ = 2.26 K3 = 4.0 L = 0.10 m

K4 = 30.0 N = 2
ρ = 998 kg/m3

p = π/4 rad

Then we substitute the parameters to the linearized system. We obtain the following linear
system: [

ω̇m

U̇a

]
=

[
−523.7 −1519.8
−1.15 −0.13

] [
ωm

Ua

]
+

[
0.65 0

0 2.73

] [
Vs
U0

]
, (43)

T =
[
−4.62 10.4

] [ωm

Ua

]
+
[
0 0

] [Vs
U0

]
(44)

4. Conclusions
In this paper, we have linearized the two-state thruster model by using the Jacobian method.
We are planning to extend this work to navigation, stability, trajectory estimation and control
design of the linearized model.
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