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Background: A well-known blood biomarker (soluble fms-like tyrosinase-1 [sFLT-1]) for preeclampsia,
i.e., a pregnancy disorder, was found to predict severe COVID-19, including in males. True biomarker
may be masked by more-abrupt changes related to endothelial instead of placental dysfunction. This
study aimed to identify blood biomarkers that represent maternal-fetal interface tissues for predicting
preeclampsia but not COVID-19 infection.
Methods: The surrogate transcriptome of tissues was determined by that in maternal blood, utilizing four
datasets (n = 1354) which were collected before the COVID-19 pandemic. Applying machine learning, a
preeclampsia prediction model was chosen between those using blood transcriptome (differentially
expressed genes [DEGs]) and the blood-derived surrogate for tissues. We selected the best predictive
model by the area under the receiver operating characteristic (AUROC) using a dataset for developing
the model, and well-replicated in datasets both with and without an intervention. To identify eligible
blood biomarkers that predicted any-onset preeclampsia from the datasets but that were not positive
in the COVID-19 dataset (n = 47), we compared several methods of predictor discovery: (1) the best pre-
diction model; (2) gene sets of standard pipelines; and (3) a validated gene set for predicting any-onset
preeclampsia during the pandemic (n = 404). We chose the most predictive biomarkers from the best
method with the significantly largest number of discoveries by a permutation test. The biological rele-
vance was justified by exploring and reanalyzing low- and high-level, multiomics information.
Results: A prediction model using the surrogates developed for predicting any-onset preeclampsia
(AUROC of 0.85, 95 % confidence interval [CI] 0.77 to 0.93) was the only that was well-replicated in an
independent dataset with no intervention. No model was well-replicated in datasets with a vitamin D
intervention. None of the blood biomarkers with high weights in the best model overlapped with blood
DEGs. Blood biomarkers were transcripts of integrin-a5 (ITGA5), interferon regulatory factor-6 (IRF6),
and P2X purinoreceptor-7 (P2RX7) from the prediction model, which was the only method that signifi-
cantly discovered eligible blood biomarkers (n = 3/100 combinations, 3.0 %; P =.036). Most of the pre-
dicted events (73.70 %) among any-onset preeclampsia were cluster A as defined by ITGA5 (Z-
score � 1.1), but were only a minority (6.34 %) among positives in the COVID-19 dataset. The remaining
were predicted events (26.30 %) among any-onset preeclampsia or those among COVID-19 infection
(93.66 %) if IRF6 Z-score was �-0.73 (clusters B and C), in which none was the predicted events among
either late-onset preeclampsia (LOPE) or COVID-19 infection if P2RX7 Z-score was <0.13 (cluster C).
Greater proportions of predicted events among LOPE were cluster A (82.85 % vs 70.53 %) compared to
early-onset preeclampsia (EOPE). The biological relevance by multiomics information explained the bio-
marker mechanism, polymicrobial infection in any-onset preeclampsia by ITGA5, viral co-infection in
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EOPE by ITGA5-IRF6, a shared prediction with COVID-19 infection by ITGA5-IRF6-P2RX7, and non-
replicability in datasets with a vitamin D intervention by ITGA5.
Conclusions: In a model that predicts preeclampsia but not COVID-19 infection, the important predictors
were genes in maternal blood that were not extremely expressed, including the proposed blood biomark-
ers. The predictive performance and biological relevance should be validated in future experiments.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Preeclampsia is a two-stage disorder consisting of placental and
endothelial dysfunction [1]. The latter is shared with other disor-
ders and diseases, and is not limited to placental dysfunction-
related diseases such as preeclampsia [2]. This may lead to false
discovery of predictive biomarkers for preeclampsia particularly
in terms of blood biomarkers. For instance, soluble fms-like
tyrosinase-1 (sFlt-1) is a well-known predictor of early-onset
preeclampsia (EOPE), especially during the first trimester of preg-
nancy [3]. However, since recent evidence also showed that sFlt-
1 could predict severe cases of COVID-19 [4,5], it is unclear
whether sFlt-1 is specific to preeclampsia or any endothelial
dysfunction-related diseases.

Hypertension in pregnancy, including preeclampsia (3 %�8% of
pregnancies) [6], is an emerging cause of maternal deaths world-
wide [7]. Although EOPE can be predicted and prevented, this sub-
type only contributes to �10 % of cases of preeclampsia [8]. While
it is less severe than EOPE, pregnant women with the late-onset
subtype (late-onset preeclampsia [LOPE]) have doubled the risk
compared to those without preeclampsia (adjusted odds ratio
[aOR] 1.7, 95 % confidence interval [CI] 1.6 to 1.9) in terms of severe
maternal morbidity (5.5 vs 3.0 per 100 deliveries) and mortality
(11.2 vs 4.2 per 100,000 deliveries) [9]. Late-onset, preterm
preeclampsia also contributes to perinatal morbidity by medically
induced prematurity, since the only cure is early delivery [1], par-
ticularly in ca. 70 % of cases that are severe preeclampsia [10].
Working in tandem with a low-cost high-sensitivity prediction
model [11], a specific prediction (i.e. with low false positives) is
needed to avoid a false decision to delivery early leading to medi-
cally induced prematurity. This is particularly true among babies
from preeclamptic women and those with fetal growth restriction
(FGR) from normotensive women, which share common predictors
[12]. In addition to FGR, preeclampsia also shares a common
pathogenesis with spontaneous preterm delivery, but both require
opposite clinical interventions [13,14]. The coronavirus disease
2019 (COVID-19) pandemic may also increase false positives
[4,5]. Therefore, finding blood biomarkers for any-onset
preeclampsia is crucial to develop strategies for predicting and pre-
venting preeclampsia in order to improve both maternal and peri-
natal outcomes of pregnancy, including ones that do not lead to
false positives due to COVID-19 infection.

A review of 126 systematic reviews of preeclampsia predictions
found that the most consistent blood biomarkers were placenta
growth factor which was particularly relevant for first-trimester
predictions of EOPE, and sFlt-1 which had a stronger association
when tested later in the pregnancy [15]. The latter blood biomar-
ker was also found to predict severe COVID-19 [4,5], which implied
that both preeclampsia and COVID-19 shared common mecha-
nisms of endothelial dysfunction [16,17]. To predict preeclampsia,
particularly regardless of the onset [8], gene expression signatures
of preeclampsia were widely studied in maternal-fetal interface
tissues [18]. None of the transcriptomes identified in tissues was
included in blood protein biomarkers to predict preeclampsia
[19]. Subtle changes in blood biomarkers may occur that corre-
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spond to changes in maternal-fetal interface tissues [20]. Never-
theless, these may be masked by more-abrupt changes related to
endothelial instead of placental dysfunction, probably due to
methodological limitations of differential expression analyses
which reveal only extremely expressed genes. A recent study
investigated early-pregnancy placental transcriptome signatures
of preeclampsia, which led to global blood biomarkers unique for
predicting this disease at any onset [21]. However, it is unclear
whether the biomarkers significantly differ future preeclampsia
from COVID-19 infection.

To identify clinically useful biomarkers that predict any-onset
preeclampsia, several conditions should apply. We need a biomar-
ker that can be sampled from the blood but represents a condition
in maternal-fetal interface tissues. The surrogate transcriptome of
those tissues, as inferred from the blood transcriptome, would sub-
sequently be utilized to develop a multivariable model that pre-
dicts any-onset preeclampsia. This should be compared between
independent cohorts with and without a particular early interven-
tion; thus, potential preventive strategies can be proposed by an
explanatory instead of exploratory approach to avoid confirmatory
bias from investigators. A prediction model should be generalized
in terms of both true positive and negative rates if it is replicated
by an independent cohort with no intervention, but it might not
be replicated in a cohort with a particular intervention. This is
because the latter will likely have a different causal structure due
to the intervention effect; however, the model should be unique
to a positive outcome which is any-onset preeclampsia. Shared
predictions with COVID-19 infection should be avoided, covering
asymptomatic, and mild and severe symptomatic COVID-19,
because this condition may coexist with preeclampsia in any-
trimester pregnant women; thus, this may lead to false positives
of an early prediction of preeclampsia, especially in the presence
of asymptomatic COVID-19. Eventually, only a few potential blood
biomarkers should be inferred from the model to allow low-cost,
practical implementation in clinical settings. This study aimed to
identify potential blood biomarkers that represent the surrogate
transcriptome of maternal-fetal interface tissues based on a model
that predicts EOPE and LOPE but not COVID-19 infection.
2. Methods

2.1. Study design and data source

This study was part of a deep-insight visible neural network
(DI-VNN) project. It applied an algorithm to predict several medi-
cal conditions, compared to other statistical and computational
machine learning algorithms. Ethical review was exempted by
the Taipei Medical University Joint Institutional Review Board
(TMU-JIRB no.: N202106025).

There were two types of prediction models subsequently devel-
oped in this study (Fig. 1): (1) surrogate transcriptome models that
derived each gene expression of a tissue type in the maternal-fetal
interface from expressions of genes in maternal blood and (2) pre-
diction models for any-onset preeclampsia using the surrogate
transcriptome compared to that using the maternal blood tran-
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Fig. 1. Predictive modeling pipeline. *, developed model; y, applied model; �, two models were developed using either the maternal-blood transcriptome or blood-derived
surrogate; DEG, differentially expressed gene.
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scriptome. The first type was to predict a condition that is occur-
ring, i.e., a diagnostic prediction task; thus, we used a cross-
sectional design. Meanwhile, the second type was to predict a con-
dition in advance, i.e., a prognostic prediction task; thus, we used a
prospective cohort design.

We utilized microarray datasets in the gene expression omni-
bus (GEO), a public functional genomics data repository (Table 1;
see Data Availability) [22,23]. For the derivation dataset of the
surrogate transcriptome, we utilized gene expressions in multiple
tissue samples from a healthy subject taken at the same time
(n = 183 samples; n = 136 pairwise samples; GSE73685; total
RNA extraction; GPL6244 Affymetrix Human Gene 1.0 ST Array)
[24]. For the development dataset of the predictive modeling,
we utilized gene expressions in maternal blood, including both
EOPE and LOPE (n = 512; GSE108497; total RNA extraction;
GPL10558, Illumina Human HT-12 V4.0 expression beadchip)
[25]. The prediction models were evaluated using the develop-
ment dataset and those for replication: (1) an experimental data-
set of a randomized controlled trial of vitamin D (25-
hydroxyvitamin D [25OHD]) supplementation at up to 23 weeks’
gestation to prevent either EOPE or LOPE (n = 157; GSE85307;
total RNA extraction; GPL6244, Affymetrix Human Gene 1.0 ST
Array) [26]; (2) an experimental dataset similar to the first one
but using a different microarray platform with additional
matched samples at 32 to 40 weeks’ gestation, and unspecified
preeclampsia (n = 60; GSE86200; total RNA extraction;
GPL10558, Illumina Human HT-12 V4.0 expression beadchip)
[27]; and (3) an observational dataset of a prospective cohort of
pregnant women with EOPE and other conditions with shared
pathophysiological derangement, including one unobserved in
the development dataset (n = 442; GSE149437; total RNA extrac-
tion; GPL28460, Affymetrix Human Transcriptome Array 2.0) [28].

The derivation, development, and replication datasets were all
collected before the worldwide COVID-19 pandemic (Fig. A.1).
For the COVID-19 dataset, we utilized another microarray dataset
to predict cases infected by COVID-19 (n = 47; GSE177477; total
RNA extraction; GPL23159, Affymetrix Clariom S Assay with Pico
Assay), consisting of: (1) uninfected controls (n = 18); (2) asymp-
tomatic cases (n = 18); (3) mild, symptomatic cases (n = 3); and
(4) severe, symptomatic cases (n = 8) [29]. We also utilized a vali-
dated gene set to predict any-onset preeclampsia during the pan-
demic (n = 404; GSE192902; total RNA extraction; GPL24676,
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Illumina NovaSeq 6000) [30]. The gene set was well-replicated,
especially for predicting preeclampsia, as validated by an indepen-
dent dataset from another study, which was collected from Febru-
ary 2017 to January 2019 and from April 2017 to July 2018.
Predicting preeclampsia using any transcripts in the gene set might
be shared with that of COVID-19 infection. But, this dataset also
allowed us to distinguish if the shared prediction (if any) was
because (1) a possibility that the discovery dataset included preg-
nant women with undiagnosed, asymptomatic COVID-19 or (2) a
methodological limitation of identifying a unique blood biomarker
under endothelial dysfunction. Although shared sFlt-1 predictions
were those between preeclampsia and severe COVID-19 [4,5], we
chose all of the conditions under COVID-19 infection, including
asymptomatic cases. It might likely be a false positive for
preeclampsia if the prognostication is not in conjunction with a
COVID-19 test result. A doctor would unlikely order a COVID-19
test if none of the indications was identified, except those tests that
are universally applied to all the pregnant women in a healthcare
facility.

2.2. Derivation of the maternal-fetal interface transcriptome from
maternal blood

A standard preprocessing pipeline of microarray data was
applied (see Appendix A). This included background correction,
probe set normalization, removal of technical outliers (Table 1),
removal of low-expressed probe sets, gene annotation, summariza-
tion from probe sets to genes, and selection of common genes
among all the microarray platforms. A differential expression anal-
ysis was conducted with batch-effect removal using a singular
value approximation. In the analysis, a moderated t-statistic was
applied using pairwise samples of maternal blood and each tissue
at the maternal-fetal interface. This was subsequently followed by
the Benjamini-Hochberg multiple-testing correction with a maxi-
mum false discovery rate (FDR) of 0.05 to determine if a gene
was differentially expressed. Therefore, we identified differentially
expressed genes (DEGs) for each tissue type at the maternal-fetal
interface compared to those in maternal blood, and computed
average expressions in maternal blood and/or each of the tissue
types.

We developed a surrogate transcriptome model for predicting
each individual-level DEG of a tissue type at the maternal-fetal



Table 1
Derivation, development, replication, and coronavirus disease 2019 (COVID-19) datasets.

Outcome Gestational age (weeks) Total

<16 16 � 23 24 � 31 32 � 40

Surrogate transcriptome model
GSE73685 (pairwise samples) – derivation dataset 136
Fundus myometrium vs maternal blood 19
Decidua (maternal side) vs maternal blood 21
Placenta (fetal side) vs maternal blood 14
Amnion (inner) vs maternal blood 20
Chorion (outer) vs maternal blood 20
Cord (fetal) blood vs maternal blood 18
Lower-segment myometrium vs maternal blood 22
Excluded (technical outliers) 2

Prediction model
GSE108497 – development dataset (no intervention) 512
Normal (nonevent) 75 69 73 68 285
Isolated fetal growth restriction (small gestational age) (nonevent) 6 7 5 3 21
Early-onset preeclampsia (event) 8 8 6 0 22
Late-onset preeclampsia (event) 4 3 3 3 13
Excluded (technical outliers; outcome with extremely underrepresented gestational age, i.e., n = 1) 171

GSE85307 – replication dataset (vitamin D +/-) 157
Normal (nonevent) 64 44 0 0 108
Early-onset preeclampsia (event) 28 13 0 0 41
Late-onset preeclampsia (event) 4 2 0 0 6
Excluded (technical outliers) 2

GSE86200 – replication dataset (vitamin D +/-) 60

Normal (nonevent) 17 7 0 24 48
Preeclampsia (event) 5 1 0 6 12
Excluded (technical outliers) 1

GSE149437 – replication dataset (no intervention) 442
Normal (nonevent) 0 0 0 20 20
Spontaneous preterm delivery (nonevent) 25 45 62 30 162
Preterm premature rupture of membranes (nonevent) 26 52 73 36 187
Early-onset preeclampsia (event) 11 23 23 9 66
Excluded (technical outliers) 7

GSE177477 – COVID-19 dataset 47
Uninfected controls (nonevent) 18
Asymptomatic cases (event) 18
Mild cases (event) 3
Severe cases (event) 8
Excluded (technical outliers) 0
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interface, but only considered genes that were differentially
expressed in that tissue type, using gene expression in maternal
blood as candidate predictors. We defined the predicted outcome
to reflect individual-level DEGs that considerably differed from
the gene expression distribution in the tissue type against that in
maternal blood, but not always extremely different (e.g., >95th
percentile). Candidate predictors were also standardized using
average expression numbers derived from the differential analyses.
A definition of the outcome and normalization of the candidate
features are described in Appendix A.

A surrogate transcriptome model was only developed for a gene
with greater than or equal to three instances for the minority out-
come and a minimum of two candidate predictors. Considering the
tradeoff between the number of genes fulfilling the aforemen-
tioned criteria and the risk of bias due to a small sample size, we
applied a protocol to reduce the number of candidate predictors
without leaking the outcome information to prevent overfitting,
as described previously [31]. This resulted in cross-validated prin-
cipal components (PCs) which were used as candidate predictors.
We applied a logistic regression with regularization, which was
an elastic net regression, and subsequently recalibrated with either
a linear regression model or a general additive model using locally
weighted scatterplot smoothing (GAM-LOESS). Each model esti-
mated a probability of 0 to 1 of how likely a gene of a tissue type
in an individual was differentially expressed compared to that of
maternal blood.
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2.3. Development and replication of a prediction model for any-onset
preeclampsia

We argue that maternal blood DEGs cannot be generalized pre-
dictors for preeclampsia since these may be misleading due to
abrupt changes in endothelial dysfunction which varies widely
among pregnant women with different comorbidities. But, if we
take the maternal blood transcriptome into account, regardless of
whether a gene’s expression is differential to preeclampsia, we
may obtain a biological signal unique to this condition, if it repre-
sents gene expression in tissues at the maternal-fetal interface, at
least to some extent. To support this argument, we compared pre-
dictive performances using the development and replication data-
sets between (1) models that used the maternal-blood
transcriptome and (2) models that used the blood-derived surro-
gate transcriptome of maternal-fetal interface tissues.

For the first type of model, we used the transcriptome of mater-
nal blood as candidate predictors. We conducted a differential
expression analysis to independently identify DEGs between
preeclampsia and non-preeclampsia in the development and repli-
cation datasets. The analytical pipeline was the same as that for
deriving the surrogate transcriptome, but the comparison was
not pairwise. We only used DEGs as the maternal-blood transcrip-
tome for the first type of model. The transcriptome should also
intersect with that used as candidate predictors for deriving the
surrogate transcriptome. If this type of model could not replicate
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the predictive performance, then this implies that maternal blood
DEGs of preeclampsia likely reflect endothelial dysfunction which
varies widely among pregnant women with different comorbidi-
ties. In addition, we examined overlapping DEGs among these
datasets to identify common genes for an exploratory analysis.

For the second type of model, we used the blood-derived surro-
gate transcriptome of the maternal-fetal interface as candidate
predictors. The surrogate transcriptome of each tissue in the
maternal-fetal interface was derived from the maternal-blood
transcriptome using surrogate models, as described in the previous
section. But, instead of the maternal-blood transcriptome as the
derivation dataset, we used those datasets for developing and
replicating a prediction model of any-onset preeclampsia. Before
deriving the surrogate transcriptome, quantile-to-quantile normal-
ization followed by standardization of candidate predictors was
applied for each of those datasets based on average expressions
of genes in each of the tissues of the derivation dataset. Since the
surrogates have different accuracies among genes to predict the
true transcriptome, we applied different weights among genes of
the surrogate transcriptome by multiplying the expression proba-
bility by Matthew’s correlation coefficient (MCC). Its value ranges
between �1 and 1, in which 1 means perfect accuracy, 0 means
poor accuracy, and �1 means inverted accuracy. We normalized
the multiplication results into values from 0 to 1.

In addition to candidate predictors, modeling algorithms may
also contribute to the predictive performance. We applied several
machine learning algorithms to develop a prediction model using
each set of candidate predictors: (1) principal-component (PC)-
elastic net regression (ENR); (2) PC-random forest (RF); (3) PC-
gradient boosting machine (GBM); and (4) deep-insight visible
neural network (DI-VNN). These models were also recalibrated
by either a linear regression model or GAM-LOESS. The analytical
pipeline for comparison among these algorithms, including details
of hyperparameter tuning, was described previously [32]. Briefly,
we used cross-validated PCs as candidate predictors, which were
data presented to the first to third learning algorithms, as
described previously [31]. The PCs were derived using only the
development dataset without outcome information. The fourth
algorithm, i.e., DI-VNN, applied two-dimensional, convolutional
neural network (CNN) algorithm, as described previously [33].
The macro architecture was determined by data-driven ontology,
i.e., a hierarchical clustering of predictors. It was conducted by
clique-extracted ontology (CliXO) algorithm [34]. Meanwhile, the
micro architecture was constructed for each child-parent connec-
tion using an Inception v4-Resnet block [35]. To represent non-
image data to a CNN model, we applied a spatial clustering for pro-
jecting inter-relationships among predictors onto a three-
dimensional array as data represented to the DI-VNN algorithm.
Spatial clustering was conducted by t-moderated stochastic neigh-
bor embedding (t-SNE) algorithm [36].

Different to the analytical pipeline [32], we excluded irrelevant
procedures and conducted external validation to replicate the
models using independent datasets instead of excluding samples
by either simple or stratified random sampling. Before replicating
the models that used the transcriptome of maternal blood, we
applied quantile-to-quantile normalization to gene expressions of
the three replication datasets based on average expressions of
genes in the development dataset.

2.4. Emulation of potential RT-qPCR-based blood biomarkers for any-
onset preeclampsia

We also compared different methods of predictor discovery for
emulating potential blood biomarkers to propose low-cost predic-
tions of any-onset preeclampsia in clinical practice, as those using
a reverse-transcription quantitative polymerase chain reaction
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(RT-qPCR). Blood biomarkers were from: (1) the best model among
those using either the maternal-blood transcriptome or blood-
derived surrogate transcriptome of maternal-fetal interface tis-
sues; (2) DEGs of the development dataset with either very low
or high expression (absolute log2 [fold change] of >2); (3) DEGS
of the development dataset but not in both the development and
replication datasets without an intervention; (4) DEGs of both
the development and replication datasets without an intervention;
and (5) a validated gene set from a previous study [30] for predict-
ing any-onset preeclampsia, including a period during the COVID-
19 pandemic. From the latter, we could only use 10 of 18 genes in
the validated gene set, because these genes were available in all
the derivation, development, replication, and COVID-19 datasets.
The genes were CAMK2G, DERA, KIAA1109, LRRC58, NDUFV3,
NMRK1, PYGO2, RNF149, TFIP11, and TRIM21.

We used combinations with one to five members from the list
of biomarkers for each method. The number of members was cho-
sen to achieve low-cost predictions. However, the number of mem-
bers in each combination might not be maximized, since the
number of combinations expands exponentially depending on
the number of biomarkers in the list.

To emulate gene expression values by the RT-qPCR, gene
expressions were standardized (i.e., using Z-scores) with the aver-
age and standard deviation (SD) calculated from the development
dataset without outliers. These were defined as values of less than
or more than 1.5 times the interquartile range, respectively, from
the first or third quantile. Yet, none of the outliers were excluded.
The emulation was conducted using a decision tree algorithm with
the maximum depth depending on the number of biomarkers in
only the development dataset.
2.5. Utilizing preeclampsia blood biomarkers for predicting COVID-19
infection

To ensure that biomarkers were unique to any-onset
preeclampsia but not COVID-19 infection, we utilized the emulated
blood biomarkers to predict COVID-19 infection as the event. The
blood biomarkers were expected to acquire lower performance
for predicting COVID-19 infection than that for predicting
preeclampsia. Although a previous study demonstrated that sFlt-
1, a well-known blood biomarker for preeclampsia, could predict
severe cases of COVID-19 [4,5], we could not reevaluate the finding
in this study, because the biomarkers were in a protein form.
Instead, we included transcripts from the validated gene set as
the fifth method of predictor discovery [30]. Since this gene set
was discovered by a differential expression analysis during the
COVID-19 pandemic, it is possible that the method falsely discov-
ers blood biomarkers misled by endothelial dysfunction which is a
key pathogenic mechanism shared between preeclampsia and
COVID-19 infection [16,17].
2.6. Statistical analysis

Bootstrapping 30 times was applied to infer the 95 % confidence
interval (CI) of the predictive performances of the prediction mod-
els and emulated blood biomarkers. The performance of a predic-
tion model was measured by the area under receiver operating
characteristics curve (AUROC) which reflects true positive and neg-
ative rates. The models should be well-replicated, which was an
interval estimate of an AUROC of � 0.5 and more than the average
per combination of a dataset and a set of candidate predictors, in
the development and replication datasets, particularly those with-
out an intervention (i.e. GSE108497 and GSE149437). The best
model was evaluated for each set of candidate predictors based
on the AUROC of the development dataset.



Table 2
Subject characteristics of derivation, development, and replication datasets.

Variable Nonevent Event P value

Derivation dataset
GSE73685 (n, %) * 134

(100)
Preterm with labor (n, %) 9 (6.72)
Preterm without labor (n, %) 30

(22.39)
y

Preterm PROM with labor (n, %) 11 (8.21)
Preterm PROM without labor (n, %) 11 (8.21) y
Term with labor (n, %) 27

(20.15)
Term without labor (n, %) 46

(34.33)
Development dataset
GSE108497 (n, %) 306

(100)
35 (100)

Maternal age at collection (year, SD) 31 (5) 31 (4) >0.05
Gestational age at collection (week, SD) 23 (10) 20 (8) >0.05
Ethnicity of Hispanic or Latino:
No (n, %) 261

(85.29)
25
(71.4)

(reference)

Yes (n, %) 45
(14.71)

10
(28.6)

0.039

Systemic lupus erythematosus:
No (n, %) 147

(48.04)
0 (0) (reference)

Yes (n, %) 159
(51.96)

35
(100)

>0.05

Replication datasets
GSE85307 (n, %) 108

(100)
47 (100)

Maternal age at collection (year, SD) 27 (5) 26 (5) >0.05
Gestational age at collection (week, SD) 14 (3) 14 (3) >0.05
Ethnicity:
White (n, %) 42

(38.89)
17
(36.2)

(reference)

Black or African American (n, %) 59
(54.63)

22
(46.8)

>0.05

Asian (n, %) 2 (1.85) 2 (4.3) >0.05
American Indian or Alaskan (n, %) 0 (0.00) 3 (6.4) >0.05
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For each method of predictor discovery, we computed the num-
ber of biomarker combinations that could predict any-onset
preeclampsia but not COVID-19 infection. Specifically, the combi-
nation should fulfill these criteria: (1) the point estimate of the
AUROC for predicting preeclampsia in the replication dataset with-
out an intervention is between the interval estimate of that in the
development dataset; (2) the point estimate of the AUROC for pre-
dicting COVID-19 infection is smaller or equal to the lower bound
of the AUROC interval estimate for predicting preeclampsia in the
development dataset; and (3) the lower bound of the AUROC inter-
val estimate for predicting COVID-19 infection is not �0.5. We con-
ducted a permutation test (500 iterations) for each method of
predictor discovery. If the P value was >0.05, then the biomarkers
fulfilled the criteria by chance, i.e., the null hypothesis was
accepted. Rejecting the null hypothesis meant that a method sig-
nificantly discovered predictors that could predict any-onset
preeclampsia but not COVID-19 infection. The best emulated
biomarkers were taken from the significant method with the great-
est number of biomarkers fulfilling the criteria.

We also conducted an exploration and reanalysis of low- and
high-level information from databases of the GeneCards human
genes (version 5.7; December 6, 2021),[37] the DIANA miRNA tis-
sue expression (15,183 datasets; miRBase version 22) [38], and the
STRING functional protein association network (version 11.5; lat-
est update August 12, 2021) [39]. These were related to the best
model, especially the best emulated blood biomarkers. The analyt-
ical codes and details, including versions, are being shared publicly
to allow replication of this study (see Code Availability). All analy-
ses were conducted using R except for retrieving the annotation.
Webpages of the retrieved information from the GeneCards and
STRING, which were reserved at the time of accession in the Inter-
net Archive and can be re-accessed via its Wayback Machine (see
Appendix A). For DIANA and STRING, we downloaded the datasets
of the information that was retrieved for this study to be shared in
Appendices A and B and the analytical codes and details.
Other (n, %) 5 (4.63) 3 (6.4) >0.05
Body-mass index (kg/m2, SD) 27.68

(7.33)
31.20
(8.00)

0.010

Asthma:
No (n, %) 65

(60.19)
27
(57.5)

(reference)

Yes (n, %) 43
(39.81)

20
(42.6)

>0.05

Vitamin D baseline (ng/mL whole
blood, SD)

27.68
(7.33)

31.20
(8.00)

0.010

GSE86200 (n, %) * 48 (100) 12 (100)
Maternal age at enrollment (year, SD) 25 (6) 24 (5) >0.05
Gestational age at enrollment (week,

SD)
14 (3) 13 (3) >0.05

Ethnicity:
Caucasian, Non-Hispanic (n, %) 12 (25) 0 (0) (reference)
Black or African American (n, %) 36 (75) 12 (100) >0.05

Fetal sex:
Female (n, %) 28 (58) 2 (17) (reference)
Male (n, %) 20 (42) 10 (83) >0.05

Vitamin D at enrollment (nmol/L whole
blood, SD) �

51.4
(26.6)–

30.8
(9.6)–

>0.05

Vitamin D at third trimester (nmol/L
whole blood, SD) �

84.9
(34.0)–

63.5
(47.1)–

>0.05 §

GSE149437 (n, %) || 369
(100)

66 (100)

Gestational age at collection (week, SD) 25 (8) 22 (7) 0.008

*, number of pairwise samples, of which those in GSE86200 are shown as unpaired
numbers (i.e., doubling); y, preeclampsia in three of 10 pregnant women with
preterm without labor [24], but the information of which samples were undis-
closed; �, 1 nmol/L = 0.2885 ng/mL; –, nonevent (n = 24) and event (n = 6); §,
significantly differs from the parent study of Al-Garawi, et al (2016), which had a
larger sample size (n = 806) [93]; ||, number of samples from both the same and
different subjects; PROM, prelabor rupture of the membranes; SD, standard
deviation.
3. Results

3.1. Subject characteristics

Only pregnancy outcome data were publicly shared at the indi-
vidual level by the original study which collected the derivation
dataset (Table 2). While tissues were obtained during a cesarean
delivery, all deliveries with or without labor were represented, as
either preterm or term delivery. These also included preterm deliv-
eries with prelabor rupture of the membrane (PROM). The deriva-
tion dataset did not publicly share which individuals were
preeclamptic (n = 3) among the pregnant women with a preterm
delivery but without labor (n = 10), as reported in the publication
[24]. The COVID-19 dataset did not publicly share subject charac-
teristics, except for sex, for both uninfected and asymptomatic
COVID-19 individuals.

Among the development and replication datasets (Table 2), only
gestational age in the replication dataset without an intervention
differed between the event and nonevent groups. This
dataset also did not report maternal age or ethnicity. Maternal ages
in the replication datasets with an intervention were younger com-
pared to those in the development dataset. Ethnicity only differed
in the development dataset for Hispanic or Latino women. Other
replication datasets with an intervention only reported non-
Hispanic/Latino ethnicities. Vitamin D intervention data were not
shared publicly in the datasets, but vitamin D blood levels were
reported at the baseline or enrollment. Only one of two replication
datasets reported vitamin D blood levels in the third trimester.
4211



H. Sufriyana, H.M. Salim, A.R. Muhammad et al. Computational and Structural Biotechnology Journal 20 (2022) 4206–4224
Those did not differ between events and nonevents in this dataset,
which was one for the microarray analysis; however, the dataset
was only a subset of a larger dataset in the parent study. Vitamin
D blood levels in the third trimester significantly differed in the
parent study [27]; thus, this replication dataset likely has smaller
power to detect differences in vitamin D blood levels in the third
trimester which was the time after a vitamin D intervention. For
the COVID-19 dataset, we identified eight of 23 females and 21
of 30 males in the publication (n = 53)1 who were diagnosed with
COVID-19 infection in the dataset. Of 24 uninfected individuals,2

that were reported in the publication [29], this dataset did not share
six of them, leaving only 47 subjects.
3.2. Blood-derived surrogate transcriptome of the maternal-fetal
interface

MCCs did not significantly differ by interval estimates for pre-
dicting individual-level DEGs among those in maternal-fetal inter-
face tissues (Fig. 2). The surrogate models had neither poor
(MCC = 0) nor inverted (MCC < 0) accuracy. Of the DEGs that could
be predicted at the individual level (Fig. 2; Table 3), the placenta
had the smallest number (n = 442), while the decidua had the lar-
gest number (n = 967). Meanwhile, the smallest and largest num-
bers of DEGs (Table 3) were respectively found in the decidua
(n = 6704) and lower-segment myometrium (n = 7574).

Proportions of the tissue transcriptome that could be predicted
from that of maternal blood (Table 3) were from 4.79 % (placenta)
to 10.49 % (decidua). The placenta had the smallest proportion of
the surrogate transcriptome, and none of the DEGs had an absolute
value of > 2 log2 [fold change]. This implied that only a small pro-
portion of the transcriptome of maternal-fetal interface tissues
could be represented by that of maternal blood, especially the pla-
centa transcriptome.
Fig. 2. Distribution of weights used to adjust the gene expression probability. The
weight was determined by Matthew’s correlation coefficient (MCC) and rounded to
two decimal places for binning MCCs. *, ratio of the number of genes per MCC bin
and the average number per tissue; y, probability of distribution.
3.3. A prediction model for any-onset preeclampsia using the surrogate
transcriptome

To develop comparator prediction models, we only used DEGs
(n = 924) based on the development dataset (Table 4), from the
blood transcriptome which intersected with those used as candi-
date predictors for deriving the surrogate transcriptome
(n = 7524). After developing the prediction models using the blood
transcriptome with several algorithms (Fig. 3), none of the predic-
tive performances were well-replicated, although the average was
higher than that using the blood-derived surrogate transcriptome
based on the development dataset. In addition, overlapping DEGs
(Table 4) were only found between the development and replica-
tion datasets without an intervention (n = 25).

Meanwhile, we found a well-replicated predictive performance
of one of the prediction models using the blood-derived surrogate
transcriptome (Fig. 3) in the development and replication datasets
without an intervention. This applied the PC-GBM which was also
applied for one of the prediction models using the blood transcrip-
tome. There were 108 predictors from the surrogate transcriptome
in any of the tissues, which were derived from 5897 predictors
from the blood transcriptome.
1 The publication erroneously reported 10 males of symptomatic COVID-19
individuals (Table 1), which was unmatched with the total number. We verified only
9 males of them in the dataset. No erratum was found.

2 While the publication reported this number in Table 1, which was matched with
total numbers by sex and age, only 18 uninfected individuals were reported in the
main text. No erratum was found.
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3.4. Potential blood biomarkers unique to any-onset preeclampsia but
not COVID-19 infection

Nevertheless, a prediction model that uses 5897 predictors is
costly in clinical settings; thus, we needed to choose a few predic-
tors of the maternal blood transcriptome to predict any-onset
preeclampsia. After our data analysis showed that the best model
was the PC-GBM, we determined how to plausibly choose a few
of the predictors from this model. But, an exploratory approach



Table 3
Surrogate transcriptome among differentially expressed genes (DEGs).

Target tissue (GSE73685) Proportion of surrogate transcriptome

Log2 FC of DEG (target tissue vs maternal blood) Non-DEG Total

>2 0 to 2 <0 to �2 <-2

Fundus myometrium (n/N, %) 2/489 (0.41) 339/3383 (10.02) 370/3141 (11.78) 2/512 (0.39) 0/1695 (0) 713/9220 (7.73)
Decidua (maternal side) (n/N, %) 8/239 (3.35) 466/3133 (14.87) 491/3159 (15.54) 2/173 (1.16) 0/2516 (0) 967/9220 (10.49)
Placenta (fetal side) (n/N, %) 0/393 (0) 193/2910 (6.63) 249/2902 (8.58) 0/573 (0) 0/2442 (0) 442/9220 (4.79)
Amnion (inner) (n/N, %) 3/413 (0.73) 331/3521 (9.4) 385/2997 (12.85) 15/532 (2.82) 0/1757 (0) 734/9220 (7.96)
Chorion (outer) (n/N, %) 14/386 (3.63) 448/3185 (14.07) 451/2835 (15.91) 7/465 (1.51) 0/2349 (0) 920/9220 (9.98)
Cord (fetal) blood (n/N, %) 1/36 (2.78) 285/1902 (14.98) 238/1886 (12.62) 0/4 (0) 0/5392 (0) 524/9220 (5.68)
Lower-segment myometrium (n/N, %) 7/444 (1.58) 453/3367 (13.45) 482/3359 (14.35) 9/404 (2.23) 0/1646 (0) 951/9220 (10.31)

FC, fold change; n, number of genes predicted by the surrogate transcriptome model; N, number of genes in the differential expression analysis.

Table 4
Differential expression independently among the datasets.

Dataset Log2 FC of DEGs (preeclampsia vs non-preeclampsia) Non-DEG Total

>2 0 to 2 <0 to �2 <-2

Development dataset
GSE108497 (n) 0 446 476 2 6600 7524

Replication datasets
GSE85307 (n) 0 0 0 0 7524 7524
GSE86200 (n) 0 1 0 0 7523 7524
GSE149437 (n) 0 187 16 0 7321 7524

Overlapping dataset
GSE108497 and GSE149437 (n) 0 14 11 0

DEG, differentially expressed gene; FC, fold change; n, number of genes.

Fig. 3. Predictive performance between models using the maternal-blood transcriptome and blood-derived surrogate in all datasets. Dashed lines show the area under
receiver operating characteristics curve (AUROC) of 0.5 and the average per dataset among models using the same set of candidate predictors. The best model was evaluated
in each set of candidate predictors by the AUROC. If the AUROC interval was �0.5 and more than the average in the development and replication datasets, particularly those
without an intervention (i.e., vitamin D supplementation), the model was well-replicated. CI, confidence interval; DI-VNN, deep-insight visible neural network; ENR, elastic
net regression; GBM, gradient boosting machine; PC, principal component; RF, random forest.

H. Sufriyana, H.M. Salim, A.R. Muhammad et al. Computational and Structural Biotechnology Journal 20 (2022) 4206–4224

4213



H. Sufriyana, H.M. Salim, A.R. Muhammad et al. Computational and Structural Biotechnology Journal 20 (2022) 4206–4224
should not be used to avoid confirmatory bias by investigators;
thus, we did exhaustive comparisons of a few predictors using
decision trees, as applied for other methods of predictor discovery
(see Subsection 2.4).

Since we needed to choose predictors that represented the tran-
scriptome of all maternal-fetal interface tissues, blood-derived pre-
dictors were chosen if these were included in predictors with the
top one to 20 absolute values of average weights, that predicted
the surrogate transcriptome of each tissue type. Predictors with
the top one to five values in all the tissue types were subsequently
chosen; thus, we developed 20 � 5 decision trees. None of the
selected predictors were genes in the DEGs of the development
dataset, which meant that the most important predictors that pre-
dicted the surrogate transcriptome in each tissue and all tissues
were not extremely expressed genes in maternal blood.

Eventually, we chose the best method of predictor discovery
based on the significantly greatest number of eligible biomarkers
(Table 5), which was intended to find those for predicting any-
onset preeclampsia but not COVID-19 infection (see Subsection
2.6). Only the blood-derived surrogate transcriptome by the PC-
GBM significantly discovered eligible biomarkers (n = 3/100,
3.0 %; P =.036). These were combined from different candidate pre-
dictors corresponding to the surrogate transcriptome in different
tissues at the maternal-fetal interface.

The three combinations resulted in final decision trees, each of
which consisted of the same predictors, i.e., ITGA5, P2RX7, and IRF6,
but the trees had different splitting cutoffs for each predictor. We
chose the tree developed with the least number of candidate pre-
dictors, which was that using the criteria of the top three surrogate
genes and the top two blood genes (Fig. 4). Transcript of ITGA5with
a Z-score of � 1.1 (terminal branch A) defined the majority of pre-
dicted events (73.70 %) among preeclampsia samples in the devel-
opment dataset, but only a minority of predicted events (6.34 %)
among positives in the COVID-19 dataset. Otherwise, to define pre-
dicted events in the development dataset, we only needed a subse-
quent measurement of the IRF6 transcript with a Z-score of �-0.73
(terminal branches B and C). This was regardless of the P2RX7 tran-
script. For predicted events in the COVID-19 datasets, none was
defined by the P2RX7 transcript with a Z-score of <0.13 (terminal
branch C), but this defined a minority of predicted events
(9.87 %) among preeclampsia samples in the development dataset.
If we only used samples with either EOPE or LOPE in the develop-
ment dataset, proportions of predicted events were respectively
shifted away or toward terminal branch A (Fig. 4). None of the pre-
Table 5
Number of biomarkers for any-onset preeclampsia but not severe coronavirus disease
2019 (COVID-19).

Method of predictor discovery Eligible
biomarkers

P
value

Blood-derived surrogate transcriptome
PC-GBM, top 1 to 20 of surrogate genes, top 1 to 5
of the blood genes (n/N, %)

3/100
(3.0 %)

0.036

Blood transcriptome
DEGs of GSE108497 *, absolute log2 fold change > 2
(n/N, %)

0/1 (0 %) 0.018

DEGs of GSE108497 * and GSE149437 y, 1 to 2
combinations from 25 DEGs (n/N, %)

3/325
(0.09 %)

>0.05

DEGs of GSE108497 but not in both GSE108497 *
and GSE149437 y, each from 899 DEGs (n/N, %)

13/899
(1.45 %)

>0.05

DEGs of a recent study (18 genes), 1 to 2
combinations from 10 DEGs in GSE108497 * and
GSE177477 �

0/55 (0.0 %) >0.05

*, the development dataset; y, the replication dataset without an intervention; �,
COVID-19 dataset; DEG, differentially expressed gene; PC-GBM, principal-compo-
nent gradient boosting machine.
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dicted events was defined by terminal branch C if we only used
samples with LOPE in the development dataset. If we only used
samples with either normal or isolated FGR in the development
dataset, proportions of the predicted nonevents were respectively
shifted away or toward terminal branch D (Fig. 4). The predicted
nonevents were less (29.85 % vs 41.25 %) defined by terminal
branch E if we only used samples with isolated FGR in the develop-
ment dataset, compared to those with all non-preeclamptic condi-
tions. Therefore, terminal branches A, B, C, D, and E (Fig. 4)
respectively tended to predict LOPE, COVID-19 infection or any
PE, EOPE, more-isolated FGR than a normal condition, and more-
normal condition than isolated FGR.

3.5. Post-analysis justification for the biological relevance of the best
potential biomarkers

In the PC-GBM (Fig. 4), the ITGA5 transcript in maternal blood
was used to predict surrogate transcripts of: (1) FANCI, SELENOV
(SELV), and TSEN15 in cord blood; (2) TPX2, WIPF3, and ARID2 in
decidua; and (3) ARID2 in the fundus myometrium. But, the ITGA5
transcript in maternal blood, that predicted the surrogate tran-
script of ARID2 in the fundus myometrium, did not fulfill the crite-
ria to be included in the emulated biomarkers (ranked within top
one to 20 surrogate genes and top one to five blood genes). The
P2RX7 transcript in maternal blood was used to predict the INSM
surrogate transcript in the amnion. Eventually, the IRF6 transcript
in maternal blood was used to predict the surrogate transcripts
of (1) ALS2CL and TMEM38B in the amnion and (2) TMEM38B in
the placenta. But, the IRF6 transcript in maternal blood, that pre-
dicted the surrogate transcript of TMEM38B in the placenta, was
not ranked in top three of surrogate genes in this tissue.

To justify the biological relevance of these weights and cutoffs,
we conducted an exploration and reanalysis of low- and high-level
information from the databases, related to ITGA5, P2RX7, and IRF6,
with the surrogate transcriptome. The biological relevance based
on this information is elaborated in Fig. 5 and Subsection 4.2.

3.6. Individual mRNAs, micro (mi)RNAs, post-translational
modifications (PTMs), and biological effects

From the GeneCards human gene database, we retrieved infor-
mation of genes under physiological conditions (Tables A.1, B.1,
and B.2). We depicted tissue-specific protein expression based on
gene information (Fig. 4). Some of the proteins might not be
expressed due to one to 39 miRNAs physiologically targeting the
genes, not to mention different miRNA expressions under patho-
logical conditions. From the DIANA miRNA tissue expression data-
base, we queried all of the miRNAs in multiple tissues using
comparisons between physiological and pathological conditions
(Tables B.3 and B.4). The latter pathological conditions included
preeclampsia with and without fetal growth restriction, and pre-
term delivery. However, except for SELV and INSM1, all other
miRNA data were available but only for those in the placenta under
preeclampsia with or without fetal growth restriction. We con-
ducted a reanalysis by computing ORs of pathological conditions
for every increase of 1 unit of log2[reads per million (RPM)]
(Table A.2). miRNAs are depicted (Fig. 4) if they targeted genes
whose proteins of which fulfilled any of these criteria (1) physio-
logically expressed in the placenta but the majority of miRNAs
were not differentially expressed under any of the pathological
conditions compared to the physiological condition (ITGA5,
P2RX7, IRF6, TSEN15, and ARID2) or (2) physiologically not
expressed in the placenta but the majority of miRNAs were differ-
entially expressed under any of the pathological conditions com-
pared to the physiological condition (FANCI, TPX2, WIPF3, and
TMEM38B). For the latter, only miRNAs targeting FANCI and



Fig. 4. Emulation of the most predictive biomarkers from the principal component-gradient boosting machine (PC-GBM). The number is the standardized value of the
splitting biomarker. A dashed-line arrow from node D to the IRF6 mRNA node is applied only if P2RX7 is not measured. *, not fulfilling the criteria (i.e., top one to 20 of
surrogate genes and top one to 5 of blood genes); a, acetylation; EOPE, early-onset preeclampsia (PE); FGR, fetal growth restriction; g, glycosylation; LOPE, late-onset PE, pa,
palmitoylation; PE, preeclampsia; ph, phosphorylation; r, ribosylation; u, ubiquitination.
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TMEM38B were significantly upregulated (Table A.2); thus, pro-
teins were expressed in the placenta under preeclampsia for
TMEM38B but only under preeclampsia with FGR for FANCI (Fig. 4).

Information on PTMs was also retrieved (Fig. 4; Table B.5). We
also considered a mapping between PTMs and biological implica-
tions (Table B.6) [40]. Protein overexpression in tissues of a patho-
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logical condition was inferred according to change in miRNAs,
adding up those in a physiological condition (Figures 4 and A.2).
These were: (1) ITGA5 in blood, the uterus, and placenta; (2)
P2RX7 in blood and the placenta; (3) IRF6 in the placenta; (4) FANCI
in blood and the placenta; (5) TSEN15 in blood; (6) ARID2 in the
placenta; and (7) TMEM38B in the placenta. All of the overex-



Fig. 5. Networks and pathways in the context of the maternal-fetal interface. We used proteins in the shortest paths connecting all of the input pairs (biomarkers and the
surrogate transcriptome as indicated by colored-highlighted names). Nodes represent proteins, for which the same colors of the nearest nodes indicate the same
overrepresented pathway. The pathway descriptors are adjacent to the nodes in the same colors. The edges indicate both functional and physical protein associations with the
directed paths [94]. The edge color indicates the type of interaction evidence. Proteins that overrepresented vitamin D-related pathways are surrounded by gray-colored
highlights, with pointers to the descriptors. The colors of the areas indicate the tissue context. *, edge information instead of the pathway in the STRING database.
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pressed proteins in tissues were modified by phosphorylation
which was related to protein–protein interactions (PPIs), protein
trafficking, cell-cycle division, and immune responses (Figure A.2).
These proteins, except for P2RX7 and TSEN15, were also modified
by ubiquitination which is related to protein stability, cell-cycle
division, and immune responses. The ITGA5 and P2RX7 proteins
were modified by glycosylation which is related to protein stabil-
ity, PPIs, protein trafficking, protein thermodynamics and kinetics,
4216
and protein activity. Meanwhile, the P2RX7, FANCI and ARID2 pro-
teins were modified by acetylation which is related to apoptosis,
protein stability, transcription, and DNA repair. In addition to
phosphorylation, glycosylation, and acetylation, the P2RX7 protein
was also modified by (1) ribosylation which is related to apoptosis,
cell signaling, transcription, and DNA repair and (2) palmitoylation
which is related to protein membrane, protein trafficking, and cell
signaling.
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3.7. Protein-protein functional association network and pathway
enrichment analysis

From the STRING functional protein association network, we
retrieved a protein–protein functional interaction network such
that all of the biomarker proteins (ITGA5, P2RX7, and IRF6) and
those of the corresponding surrogate transcriptome were com-
pletely connected (Table A.3). The minimum score of the interac-
tion was 0.4 (default setting). We set a maximum of 50
interactors for each of the first- and second-shell interactions
with our input proteins. After maximum numbers were achieved,
four proteins remained disconnected, which were encoded by the
surrogate transcriptome in fetal tissues in the PC-GBM model: (1)
INSM1 and ALS2CL in the amnion; (2) SELV in cord blood; and (3)
TMEM38B in the placenta. But, if we queried only these proteins
in the database, all of them were completely connected after a
maximum of 50 and 20 interactors, respectively, at the first-
and second-shell interactions. In the PC-GBM model, all of the
biomarker transcripts in maternal blood corresponded to surro-
gate transcripts which were translated to INSM1, ALS2CL, SELV,
and TMEM38B in the isolated network. Since maternal tissues
(blood and the decidua) only interface with the placenta among
fetal tissues in the isolated network, we focused on the corre-
sponding surrogate transcript in the placenta, which was
TMEM38B, to identify its interactors that openly connected to
other surrogates in the isolated network. The only one that fit
the criterion was PLOD2. This protein was then included to query
all ITGA5 and IRF6 proteins in maternal blood, the transcripts of
which corresponded to surrogates in the decidua and placenta,
according to the PC-GBM model. The PLOD2 protein enabled con-
nections between biomarkers and surrogate transcripts with
those in the isolated network.

We also conducted a pathway enrichment analysis using all of
the proteins and interactors based on multiple pathway databases
which were integrated in the STRING platform. The number of
interactors was reduced by including only those in the shortest
paths connecting every pair of proteins in a single or a pair of tis-
sues (Table A.4). This resulted in 37 proteins in total. The
biomarkers and corresponding surrogate transcriptome in the
PC-GBM encoded 32 % (n = 12 of 37) of the proteins. To interpret
results of the pathway enrichment analysis, we selected signifi-
cantly overrepresented pathways either for a single or a pair of
tissues (Tables A.4 and B.7) by these criteria, according to a pre-
vious protocol [41] (1) pathways, for each combination of genes,
that had the number of background genes in this order of priority,
i.e., 15 to 200, 10 to 14, and 201 to 500, or <10 and >500 and (2)
pathways, for each combination and each database, that had both
the highest strength of overrepresentation and the largest num-
ber of observed genes (allowing ties). Since pathway titles from
PubMed are not always informative, we identified descriptors
that were briefly informative and contextually relevant to our
genes of interest, that were overrepresented in the pathways
(Fig. 5; Table B.7). The same criteria were also applied to filter
only pathways related to vitamin D. Eventually, we determined
a directed path in each edge based on pathways in the elaborated
illustration (Fig. 5) for the network and pathways in the context
of the maternal-fetal tissue interface. If no common pathway
was found, which included a pair of nodes connected by an edge,
then we determined the directed path based on the edge informa-
tion collected in the STRING database.

Eventually, based on either the pathway or edge information,
we manually curated directed paths accompanying the edges
(Fig. 5). This is important for systematically interpreting the mean-
ing of the edges. Most of the directed paths were indirect by a com-
mon effect. The interpretation of path implications is elaborated in
Subsections 4.2.1 to 4.2.5.
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4. Discussion

4.1. Summary of findings

We identified ITGA5, IRF6, and P2RX7 as potential blood
biomarkers to predict any-onset preeclampsia but not COVID-19
infection. These biomarkers represent the surrogate transcriptome
of maternal-fetal interface tissues and were well-replicated to pre-
dict preeclampsia using a dataset without a vitamin D interven-
tion. The ITGA5, IRF6, and P2RX7 transcripts had weights within
the top two of any tissues in the PC-GBM model, and we subse-
quently selected from transcripts with the top three weights in
each of the tissues (see Subsection 3.4). Without considering
potential false positives due to COVID-19 infection, only the ITGA5
and IRF6 transcripts were needed to predict any-onset
preeclampsia.

We found these predictors using the blood-derived surrogate
transcriptome of maternal-fetal interface tissues for predicting
preeclampsia but not COVID-19 infection. This method discovered
these predictors not simply by chance, and identified the largest
number of predictors among other methods, which were standard
pipelines of predictor discovery using transcriptomic data, and
those based on a previous preeclampsia gene set [30]. Predictions
of the discovered biomarkers were mostly shared between
preeclampsia and COVID-19 infection, including those from the
previous preeclampsia gene set [30]. Since it was discovered dur-
ing the pandemic but validated antecedently, the shared prediction
was more likely because of the method of predictor discovery that
was limited to identifying a blood biomarker of a condition, which
should be unique among those conditions that shared endothelial
dysfunction as a key pathophysiological derangement.

Post-analysis justification for the biological relevance of ITGA5,
IRF6, and P2RX7 identified relationships between these blood
biomarkers with the surrogate transcriptome, i.e.: (1) FANCI, SELV,
and TSEN15 in cord blood; (2) TPX2, WIPF3, and ARID2 in the
decidua; (3) ARID2 in the fundus myometrium; (4) INSM1, ALS2CL,
and TMEM38B in the amnion; and (5) TMEM38B in the placenta.
These were justified at the levels of genes, miRNAs, PTMs, PPIs,
enriched pathways, and directed paths. Both low- and high-level
information implied the biomarker mechanism for predicting
preeclampsia, the pathophysiological derangement related to
polymicrobial infection and viral co-infection, the shared predic-
tion with COVID-19 infection, and the non-replicability of the pre-
diction under a vitamin D intervention.
4.2. Elaboration of the biomarkers and the biological relevance

To elaborate results of this study, we should consider the mod-
eling pipelines. The surrogate transcriptome in maternal-fetal
interface tissues was derived by the maternal blood transcriptome
under non-preeclamptic conditions with or without PROM and ter-
minated either preterm or at term. But, we developed the PC-GBM
to identify important predictors of any-onset preeclampsia in
maternal blood, that represented the transcriptome in maternal-
fetal interface tissues. Among the transcripts involved in the patho-
physiological derangement of any-onset preeclampsia in those tis-
sues, the model only captured ones that were connected to the
transcriptome in maternal blood under non-preeclamptic condi-
tions. However, some of the connections changed due to
preeclampsia; thus, the model did not take those into account.
The model was also chosen only if it was well-replicated when
using a dataset with no preventive intervention, but not those with
a vitamin D intervention. Any biological process that was inter-
fered with by vitamin D would impair the performance of a model
that was not significantly predictive (i.e., an AUROC interval of
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<0.5). Eventually, the final biomarkers were those that fulfilled the
criteria to identify a few, well-replicated predictors of any-onset
preeclampsia but not COVID-19 infection. But, we needed to differ-
entiate which results of the biomarker predictions were likely due
to any-onset preeclampsia or COVID-19 infection using a decision
tree.

4.3. Polymicrobial infection of fetal tissues in preeclampsia implied by
ITGA5

The majority of the predicted events (73.70 %) among any-onset
preeclampsia samples in the development dataset were solely
defined by the ITGA5 transcript with a Z-score of �1.1 (Fig. 4). This
included only a minority of predicted events (6.34 %) among those
with COVID-19 infection. Expression of the ITGA5 transcript, as
shown by the PC-GBM, was inverse (negatively weighted) to those
of FANCI, SELV, and TSEN15 in cord blood.

A pathway from PubMed [42], overrepresented by the genes
including FANCI (Table B.7), indicated a repair response to DNA
damage by crosslinks due to colibactin of Escherichia coli B2. This
protein had a common-cause, indirect path to p53 that mediates
cell arrest (Fig. 5). This might be a DNA-repair response of synci-
tiotrophoblasts of the placenta, of which either a transcript-
containing exosome or protein of FANCI might be secreted into
cord blood. This was supported by: (1) the transcript being overex-
pressed in cord blood of the derivation dataset; (2) most of the
miRNAs targeting FANCI being downregulated under preeclampsia
with FGR (Fig. 4; Table A.2); (3) the protein also being overex-
pressed in blood plasma (Fig. 4; Table B.2); and (4) the PTMs
including protein trafficking and PPIs as implications (Fig. A.2).
Expression of the FANCI transcript in cord blood was inversely
weighted with the ITGA5 transcript in defining predicted
preeclampsia, according to the PC-GBM (Fig. 4). The DNA-repair
response, including the cell-arrest mechanism, might be impaired
in syncitiotrophoblasts which mediate protein trafficking and PPIs
between maternal and fetal blood. In addition, the role of FANCI in
syncitiotrophoblasts of the placenta was also supported by its pro-
tein overexpression in this tissue due to downregulation of miR-
NAs under preeclampsia with FGR (Fig. 4; Table A.2). However,
the PC-GBM model did not show that ITGA5 corresponded to
FANCI in the placenta, because the surrogate transcriptome model
was derived under non-preeclamptic conditions.

Both ITGA5 and FANCI were connected via ITGB1-p53 in the
shortest path (Fig. 5). Epithelial progenitor cell (EPC) differentia-
tion (Fig. 5), which is probably applied to placental trophoblasts,
is induced by shear stress via by the ITGB1-p53 pathway, leading
to differentiation into syncitiotropblasts at the placenta-maternal
blood interface [43]. ITGB1 activation opposes the p53-mediated
cell arrest [42]. But, at the placenta-decidua interface, a
membrane-bound ITGB1-ITGA5 receptor may induce cell arrest
as inferred from that in mesenchymal stromal cells (MSCs) [44],
instead of opposing p54-mediated cell arrest. This is probably
because placental trophoblasts undergo the epithelial-to-
mesenchymal transition (EMT) [45], which changes the cell arrest
response related to ITGB1 at the placenta-decidua interface. Mean-
while, EPC adhesion is reduced due to ITGA2B platelets [43].
ITGA2B also forms a complex with ITGA5 as a membrane-bound
receptor of platelets, genes of which were overrepresented in the
SMART (SM00191), KEGG (hsa04640 and hsa05205), and GO Pro-
cess (GO:0007369) pathways (Table B.7).

Common polymorphisms exist between ITGA2B and TSEN54
[46], of which the latter forms an endonuclease complex with
TSEN15 (Fig. 5). The TSEN54 and TSEN15 genes were overrepre-
sented in the GO Process (GO:0006388) and COMPARTMENTS
(GOCC:1902555) pathways (Table B.7). The surrogate transcript
of TSEN15 in the PC-GBM was also inversely weighted with the
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ITGA5 transcript in defining predicted preeclampsia. Since the
absence of polymorphisms is most likely in any pregnant women,
preeclampsia prediction using the ITGA5 transcript may be replica-
ble only in this situation.

The third surrogate transcript of cord blood in the PC-GBM was
SELV, which inversely corresponded to ITGA5 (Fig. 4). The Selv pro-
tein can upregulate Gpx4 transcript expression (Fig. 5) in the liver
and testes under a specific amount of dietary selenium given to
mice [47]. A meta-analysis of eight observational studies showed
lower selenium concentrations of either maternal or cord blood
from Asian preeclamptic women (mean difference �9.77, 95 % CI
�16.76 to �2.79; n = 299; I2 92 %), while a meta-analysis of three
randomized-controlled trials showed selenium supplementation
reduced the relative risk of preeclampsia (0.28, 95 % CI 0.08 to
0.84; n = 218; I2 0 %) [48]. The GPX4 and TP53 genes were overrep-
resented in the WikiPathways (WP4313) and KEGG (hsa04216)
pathways (Table B.7). Both are ferroptosis pathways. This may
indicate an impaired intracellular antioxidant system due to either
ITGA5-related p53 upregulation or SELV-related GPX4 downregu-
lation, which may share a common cause. Ferroptosis, including
GPX4, is also involved in bacterial infections and polymicrobial
sepsis [49], including by E. coli [50]. This provides a potential link
to the DNA-repair response involving FANCI.

Nevertheless, mRNA expression of SELV was only found in
testes but with an unknown location for protein overexpression
under physiological conditions (Tables B.1 and B.2). Unlike the
FANCI transcript that was overexpressed in the placenta with pro-
tein overexpression in blood plasma, secretion from syncitiotro-
phoblasts of the placenta to cord blood is unclear for SELV either
as a transcript-containing exosome or protein. Meanwhile, the
shortest paths connecting ITGA5, FANCI, SELV, and TSEN15 com-
monly involved p53 (Fig. 5), in which PPIs were likely intracellular
within a common cell type. A potential cell type is circulating tro-
phoblasts; however, previous studies only investigated this cell
type in maternal blood up to 4 weeks postpartum [51,52], but
not in cord (fetal) blood. Circulating trophoblasts were those from
extravillous trophoblasts [51], which also require the EMT, as
occurs in the placenta-decidua interface. Future investigations
need to identify circulating trophoblasts in cord blood. This may
help elucidate pathophysiological derangement of preeclampsia,
that involves downregulation of FANCI, SELV, and TSEN15 in cord
blood, corresponding to upregulated ITGA5 in maternal blood.
4.4. Polymicrobial infection of uterine tissues in preeclampsia implied
by ITGA5

Unlike the surrogate transcriptome in cord blood as shown by
the PC-GBM (Fig. 4), expression of the ITGA5 transcript was alike
(positively weighted) to those of TPX2, WIPF3, and ARID2 in the
decidua, but inverse (negatively weighted) to those of ARID2 in
the myometrium. No proteins of these surrogate transcripts were
found to be overexpressed in the uterus under a non-
preeclamptic condition (Table B.2). However, we did not find
miRNA data in the uterus that could justify the absence or presence
of protein expressions in this tissue, as in the placenta (Fig. 4);
thus, the proteins may also be overexpressed in the uterus under
some circumstances. All of the genes in the shortest path connect-
ing ITGA5 and WIPF3 were overrepresented in a KEGG (hsa05135)
pathway (Table B.7). This indicated that ITGA5-ITGB1 and WIPF3
have a synergistic, common effect (Fig. 5), which was that on
WASL, resulting anti-phagocytosis and disruption of the actin
cytoskeleton, according to the KEGG pathway. It describes Yersinia
infections, or more generally, virulence of many gram-negative
bacteria by the type III secretion system for injecting toxins to
immune and epithelial cells, leading to immune evasion and/or cell
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invasion, which are location-specific via binding of the bacterial
adhesins to ITGA5-ITGB1 [53].

Other surrogate transcripts of the decidua in the PC-GBM were
connected to ITGA5 via ITGB3 (Fig. 5). Both ITGA5 and ITGB3 were
overrepresented in a GO Function (GO:0005161) pathway
(Table B.7) for platelet-derived growth factor receptor binding.
Hepatocyte growth factor, which is mostly derived from platelets,
forms a complex among ITGA5-ITGB1, ITGAV-ITGB3, and Met [54].
Overrepresentation by ITGB1 and ITGB3 was also found in a KEGG
(hsa04611) pathway for platelet activation and five pathways from
five different databases (Table B.7). The KEGG pathway depicted
collagen binding to ITGA2-ITGB1 of platelets, which leads to com-
plement and coagulation cascades via ITGA2B-ITGB3. Therefore,
upregulation of ITGA5 might not only result in anti-phagocytosis
and disruption of the actin cytoskeleton in immune and epithelial
cells in the decidua, but also platelet adhesion with the comple-
ment and coagulation cascades.

A pathway overrepresentation by ITGB3 and TOP2A connected
ITGA5 to other surrogate transcripts of the decidua in the PC-
GBM model (Fig. 5). This pathway was retrieved by STRING from
PubMed, which mapped the TOP2A and ITGB3 genes in the BRCA1
region on chromosome 17q12-q21 (Table B.7). These genes proba-
bly share a common cause affecting the BRCA1 region such that
both of the genes are upregulated under a preeclamptic condition.
Two pathways from STRING clusters and PubMed were overrepre-
sented by TOP2A with respect to TPX2 and ARID2, which were sur-
rogate transcripts of the decidua in the PC-GBM model (Table B.7).
These are related to DNA replication and decatenation respectively
involving TOP2A-TPX2 and TOP2A-ARID2-PBRM1. The common
cause affecting the BRCA1 region may lead to cell proliferation in
the decidua. This is probably a response to protect uterine blood
vessels from infection-related endothelial dysfunction, because
MSCs in the decidua, particularly extracellular vesicles, exhibited
increased proliferation and attachment of endothelial cells
in vitro (i.e., human umbilical vascular endothelial cells [HUVECs])
treated with either bacterial lipopolysaccharide or serum from
preeclamptic women [55].

To this point, the biological relevance of ITGA5 prediction for
terminal branch A (Fig. 4) implied ‘‘normal” placentation at
placenta-maternal blood and placenta-decidua interfaces, but
involving polymicrobial infection and platelet-related responses.
A previous study identified clinically relevant subclasses of
preeclampsia [56]: (1) a precondition to other subclasses, which
is healthy placenta consisting of maternal non-preeclamptic term
delivery, non-infection preterm delivery, and maternal preeclamp-
sia which was mostly similar to LOPE; (2) canonical preeclampsia,
mostly similar to EOPE; (3) immunological preeclampsia, mostly
similar to FGR with or without preeclampsia; (4) infection-
related preterm delivery; and (5) any other subclasses with chro-
mosomal abnormalities. However, this contradicts the revised
two-stage model that proposed maternal preeclampsia in the first
subclass having an abnormal placenta, in which placentation is
normal but undergoes uteroplacental malperfusion at term [2].
Herein, we proposed that malperfusion at term would have not
been manifested to LOPE, had it not been preceded by adequate
placental response to hematogenous infection. An infection was
implied by terminal branch A which mostly included predicted
events among either EOPE or LOPE samples in the development
dataset, consistent with the first subclass as proposed by a previ-
ous study [56]. Although the fourth subclass was also related to
infections, it was mostly chorioamnionitis, for which cases were
likely because of an ascending, genital infection instead of that
from a hematogenous route [57].

The hallmark of abnormal placentation in EOPE is failure of
physiological spiral artery remodeling at the myometrium-
decidua interface [58]. Meanwhile, terminal branch A implied
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‘‘normal” placentation, which also included the majority of pre-
dicted events among EOPE samples in the development dataset.
Yet, unlike the surrogate transcript of ARID2 in the decidua, the
ITGA5 transcript was inverse (negatively weighted) to that of
ARID2 in the fundus myometrium, as shown by the PC-GBMmodel
(Fig. 4). In the context of this tissue, the ITGA5 protein was con-
nected to ARID2 by the shortest path including FN1 and TERT
(Fig. 5). All four genes were overrepresented in a GO Process
(GO:0030334) pathway for regulating cell migration, while three
of the genes, excluding ITGA5, were overrepresented in a PubMed
pathway (Table B.7). The latter pathway included a description of
hepatitis C virus genome insertion that breaks sequences of ARID2
[59]. This may explain the downregulation of ARID2, in which the
transcript expression is inverse to that of ITGA5 in the PC-GBM
model. Since co-infection with bacteria and viruses reasonably
has a lower probability compared to that of only a bacterial infec-
tion, this is coincidentally consistent with the lower weight of
ITGA5 to the surrogate ARID2 transcript of the fundus myome-
trium in the PC-GBM model. In this model, the top 20 weights in
the maternal blood transcriptome within the fundus myometrium
were not within the top five in any tissues. Instead, the weight of
ITGA5 corresponding to ARID2 in the fundus myometrium was
the top 1974th in the PC-GBM model (Fig. 4).

4.5. Viral co-infection in early-onset preeclampsia implied by ITGA5-
IRF6

The remaining predicted events (26.30 %) among any-onset
preeclampsia samples in the development dataset were defined
by the ITGA5 transcript with a Z-score of <1.1 (Fig. 4). Contrary
to the previously described effect, downregulation of ITGA5 may
result in reduced differentiation of placental trophoblasts into
syncitiotrophoblasts, which normally occurs at the placenta-
maternal blood interface. Accordingly, p53-mediated cell arrest is
also reduced at the placenta-decidua interface. This may lead to
typical placentation in EOPE. In the decidua, downregulation of
ITGA5 was also followed by the surrogate transcriptome, according
to the PC-GBM model. This may lead to reduced proliferation of
MSCs in the decidua, followed by reduced proliferation and attach-
ment of endothelial cells. However, since the ITGA5 transcript with
a Z-score of �1.1 was the majority of the predicted events among
either EOPE or LOPE samples, the IRF6 transcript with a Z-score of
�-0.73 was needed to define predicted events of preeclampsia,
especially EOPE.

Terminal branches B, C, and D (Fig. 4) indicated relative upreg-
ulation of the IRF6 transcript, but the cutoff value was higher for
terminal branches B and C compared to that of terminal branch
D (Z-scores of �0.73 vs �0.81). If only samples with either EOPE
or isolated FGR were used in the development dataset, the propor-
tions of predicted events or nonevents were shifted toward the ter-
minal branches B/C or D, respectively. Among the emulated
biomarkers, only the IRF6 transcript was connected to the surro-
gate transcriptome in the placenta with or without preeclampsia.
This probably explains the similarity of placental characteristics
of EOPE and isolated FGR.

Upregulation of IRF6 may result from a reduction in negative
feedback to IRF6 transcription. The protein has a synergistic effect
with SERPINB5 (Fig. 5). Both genes and HDAC1 were overrepre-
sented in a PubMed pathway (Table B.7) which indicated such an
effect [60]. Meanwhile, the genes of ITGA5-ITGB1 and SERPINB5
genes were overrepresented in another PubMed pathway that
showed a common cause of a reduction in cell adhesion (ITGA5-
ITGB1) and spreading (SERPINB5) [61]. Since ITGA5 was downregu-
lated in terminal branches B to E (Fig. 4), SERPINB5 expression was
likely downregulated. According to that pathway [61], since IRF6-
dependent gene expression is regulated by SERPINB5, a reduction
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of which avoids the downstream effect of IRF6, then transcript
expression is upregulated if the downstream effect provides nega-
tive feedback to IRF6 transcription. The interferon regulatory factor
(IRF) family is important for inducing interferons in both antiviral
and antimicrobial responses, particularly IRF6 with a downstream
effect on transcription of type II interferon [62]. This interferon
provides negative feedback to its transcription via interleukin
(IL)-10 [63,64]. Avoiding the downstream effect of IRF6 may cancel
the negative feedback; thus, IRF6 upregulation is maintained with-
out its antiviral and antimicrobial effects.

Without the protective mechanism, damage-associated molec-
ular patterns (DAMPs) may be identified. DAMPs include HMGB1
in the shortest path from IRF6 to ALS2CL (Fig. 5) which was the sur-
rogate transcriptome of the amnion in the PC-GBM (Fig. 4). The
HMGB1 protein was proposed to be one of the effectors of sterile
inflammation that may cause preeclampsia, in which one of the
mediating inflammasomes (i.e., pyrin) can lead to inactivation of
Rho GTPases and microtubule disruption due to microbial infection
(i.e., pathogen-associated molecular patterns [PAMPs]) but not
DAMPs [65]. This may be related to a PubMed pathway overrepre-
sented by ALS2CL and two interactors (viz., RAB5A and PIK3C3) in
its shortest path to IRF6 (Fig. 5; Table B.7). The pathway describes
the role of ALS2CL in the inactivation of Rho GTPases and micro-
tubule disruption [66]. However, the surrogate ALS2CL transcript
of the amnion was inverse (negatively weighted) to that of IRF6,
which may indicate loss of response following the pyrin inflamma-
some, regardless of the triggers, either PAMPs or DAMPs. Nonethe-
less, the IRF6 transcript would have not upregulated, had it no
microbial infection; thus, sterile inflammation might not cause
preeclampsia.

Since the HDAC1 protein also has a synergistic effect with SER-
PINB5 (Fig. 5), the downstream effect of this protein was also
avoided as was that of IRF6. A pathway of GO function
(GO:0042826) was overrepresented by HDAC1, TP53, and INSM1.
The pathway describes histone deacetylase (HDAC) binding; thus,
avoiding the downstream effect of HDAC1 would result in HDAC
inhibition. This was demonstrated to result in (1) a dose-
dependent increase of chymase expression in HUVECs, the upreg-
ulation of which was found in the maternal endothelium under
preeclampsia and (2) generation of chymase-dependent angioten-
sin II, as reported in several cardiovascular diseases [67]. In termi-
nal branch A (Fig. 4), we indicate ITGA5-related p53 upregulation
or SELV-related GPX4 downregulation. If the regulation is inverted
in the other terminal branches of the decision tree (Fig. 4), then
p53 downregulation is consistent in avoiding HDAC binding. Regu-
lation of p53 connects all of the surrogate transcripts of fetal tis-
sues in the PC-GBM model, that were derived by all the
emulated biomarkers (Figs. 4 and 5).

The surrogate TMEM38B transcript was both inverse and alike
(negatively and positively weighted) to that of IRF6, in which the
latter weight made IRF6 a lesser rank of biomarkers in deriving
the surrogate transcriptome of the placenta. This implied the sur-
rogate TMEM38B transcript of the placenta is affected by the pres-
ence or absence of other substances in the same tissues such that
the expression of TMEM38B is alike to that of IRF6 under
preeclampsia, but the expression is inverse in other tissues if such
substances are absent or present under non-preeclamptic condi-
tions. This may be related to EZH2 which only exists if we identi-
fied the shortest paths between TMEM38B and either the
emulated biomarkers or the surrogate transcriptome in the context
of the cord blood-placenta interface (Fig. 5). The shortest paths did
not include EZH2 if the paths were identified in the context of
placenta-amnion and decidua-placenta interfaces. A KEGG
(hsa00310) pathway was overrepresented by EZH2 and PLOD2
(Table B.7). Both EZH2 and PLOD2 are involved in lysine degrada-
tion respectively resulting in carnitine-glycine and protein 5-
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galactosyloxylysine as either end or side products. We could find
no evidence for an association of the latter with preeclampsia,
but a systematic review identified carnitine-related metabolites
and glycine as metabolomics associated with preeclampsia [68].
Notably, acyl carnitine and glycine were significantly higher in
preeclamptic women and cord blood, respectively, compared to
normotensive controls and maternal blood; however, these did
not individually predict preeclampsia [69]. This is probably
because the role of EZH2 may be minor if it is related to expression
of the TMEM38B transcript that is alike to IRF6. In this circum-
stance, the absolute weight of the IRF6 transcript to the surrogate
transcript of TMEM38B was less than the inverted one (Fig. 4).

The surrogate TMEM38B transcript of the amnion in the PC-
GBM was inverse (negatively weighted) to IRF6 (Fig. 4). In addition
to the shortest path that included EZH2, we also identified other
paths that connected IRF6 in maternal blood and TMEM38B in
the context of the placenta-amnion and decidua-placenta inter-
faces (Fig. 5). All of the shortest paths including TMEM38B required
PLOD2. Both were overrepresented in UniProt Keywords (KW-
1065) and WikiPathways (WP4786) pathways (Table B.7). If the
TMEM38B transcript was downregulated, then the possible down-
stream effect would be impaired type I collagen synthesis, particu-
larly in the context of the placenta-amnion. In this circumstance,
since a protein complex was formed by PLOD2, KDM1A, and INSM1
(Fig. 5), downregulation of the latter transcript would result in the
same downstream effect with downregulation of the TMEM38B
transcript, as implied by the inverted weights of those surrogates
to the emulated biomarkers and the PC-GBM model (Fig. 4). Even
if a pregnant woman was predicted to be in terminal branch C
(Fig. 4), in which downregulation of P2RX7 would correspond to
upregulation of INSM1, the downstream effect still follows down-
regulated TMEM38B with upregulated IRF6. Therefore, this proba-
bly impairs type I collagen synthesis in the amnion. However, we
found no miRNA data in the amnion that could justify possible pro-
tein expression of TMEM38B in this tissue, as that in the placenta
(Fig. 4); thus, the impaired synthesis in the amnion might also
never occur.

Terminal branches B, C, and D were all defined by downregu-
lated ITGA5 and upregulated IRF6, which corresponded to upregu-
lation of the TMEM38B protein in the placenta, according to the
biomarkers, the PC-GBM model, and the miRNAs (Fig. 4). In the
context of the decidua-placenta interface (Fig. 5), the shortest path
also included PLOD2, FN1, ITGB3, TOP2A, and SMARCA4. In con-
trast to the effect, as described previously, downregulation of
ITGA5 may result in reduced cell proliferation in the decidua, lead-
ing to an impaired protective response for uterine blood vessels
against infection-related endothelial dysfunction [55]. Viral co-
infection may have a putative role in this circumstance. Further-
more, impaired trophoblasts may also be related to the shortest
path between ITGA5 and TMEM38B via FN1 and PLOD2 (Fig. 5).
Transcripts of ITGA5, FN1, and PLOD2 were overrepresented in a
PubMed pathway (Table B.7) which describes regulation of cell
migration by hypoxia via collagen PTMs (PLOD2) and cell motility
(FN1-ITGA5) [70]. Meanwhile, transcripts of FN1, PLOD2, and
TMEM38B were overrepresented in a PubMed pathway which
describes involvement of TMEM38B in collagen PTMs by PLOD2
in order to alter the extracellular matrix (ECM) in addition to
FN1 [71].

Downregulated ITGA5 in terminal branches B, C, and D would
only correspond to upregulated TMEM3B in the placenta if the
IRF6 transcript is upregulated (Fig. 4). While the shortest path
exists between IRF6 and TMEM38B, a possible explanation is not
straightforward by the interactors along the path. This is probably
because the STRING interaction is single-species. This means a PPI
only semantically involves a protein name from another species,
i.e., Sxl of Drosophila, but did not provide an alternative interaction
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by the human homologue. The IRF6-SMARCA4 and SMARCA4-TOP2A
genes were overrepresented in two PubMed pathways (Table B.7).
The pathways respectively describe how (1) the IRF6 and
SMARCA4 proteins have a common target gene (Sxl) [72], a Droso-
phila homologue of human antigen R (currently ELAVL1) which sta-
bilizes AU-rich RNA element (ARE)-containing mRNAs [73] and (2)
the SMARCA4 protein avoids TOP2A degradation [74]. A higher
level of the IRF6 protein may allow more SMARCA4 proteins to
avoid TOP2A degradation during cell proliferation in the decidua,
which is nevertheless reduced, as inferred from the downregula-
tion of ITGA5. However, human antigen R was identified in placen-
tal homogenates of preeclamptic women, which induced
aggregation of cytoplasmic stress granules in a human trophoblast
cell line (HTR-8/SVneo cells) [75]. Upregulated IRF6 in terminal
branches B, C, and D (Fig. 4) may be transcriptionally involved in
the pathogeneses of preeclampsia and FGR, via human antigen R.
This may explain the shared pathophysiological derangement of
both conditions related to impaired trophoblasts which are impor-
tant for spiral artery remodeling during placentation [76]. Upregu-
lated IRF6 in maternal blood may be a part of exosomes which
undergo endocytosis into cells in the placenta and was translated
into the protein (Fig. 4), which transcriptionally activates human
antigen R. If it is inhibited in human lung fibroblasts by transfect-
ing cells with its small interfering (si)RNA, a significant reduction
in FN1 also occurred [77]. This implied that the upregulation of
IRF6 increases FN1 as negative feedback to impaired, ITGA5-
mediated cell migration. Yet, this physiological protection is inad-
equate in conditions defined by terminal branches B, C, and D
(Fig. 4). Alternatively, there is probably another substance which
behaves similarly to the siRNA of human antigen R, leading to
the reduction of FN1 [77].

4.6. Shared predictions between preeclampsia and COVID-19 by
ITGA5-IRF6-P2RX7

As described previously, a PubMed pathway was overrepre-
sented by RAB5A, PIK3C3, and the surrogate ALS2CL transcript of
the amnion in its shortest path to IRF6, which was inversely con-
nected (negatively weight) (Figs. 4 and 5). The RAB5A and PIK3C3
transcripts were also overrepresented in a PubMed pathway with
HMGB1 and P2RX7 (Table B.7). The pathway describes P2RX7
and TLR2 of dendritic cells (DCs) as a response to HMGB1 by autop-
hagy, similar to those in obesity and hepatitis C virus infection
respectively involving PIK3C3 and RAB5A [78]. Terminal branch B
(Fig. 4) defined predicted events of both preeclampsia and
COVID-19 infection, in which the IRF6 and P2RX7 transcripts in
maternal blood were upregulated (with respective Z-scores of � -
0.73 and � 0.13). This implied an increasing response to DAMPs.

Furthermore, the P2RX7 transcript had the shortest path to the
surrogate INSM1 transcript of the amnion in the PC-GBMmodel, in
both those related and unrelated to IRF6 (Fig. 5). These respective
paths were either P2RX7-TLR2-SERPINB5-HDAC1-INSM1 or
P2RX7-HMGB1-PIK3C3-TP53-HDAC1-INSM1. The surrogate INSM1
transcript of the amnion in the PC-GBM model was inverse (nega-
tively weighted) to P2RX7 (Fig. 4). This is consistent with the pre-
vious description of avoiding the downstream effect of HDAC1.
HDAC inhibition results in chymase-dependent angiotensin II gen-
eration in preeclampsia [67]. This was also proposed for COVID-19,
which is a major non-renin, non-angiotensin-converting-enzyme
(ACE) blood pressure regulatory system that activates transform-
ing growth factor (TGF)-b, matrix metalloproteinase (MMP)-9,
and thrombin-plasmin, which are respectively related to structural
injury, organ remodeling, and enhanced coagulation [79]. In addi-
tion to chymase-dependent angiotensin II, TGF-b [80], MMP-9 [81],
and thrombin-plasmin [82] were also proposed to have roles in for
preeclampsia. Chymase-dependent angiotensin II may also be a
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therapeutic target for preeclampsia, including one that is superim-
posed by COVID-19 infection [83].

4.7. Non-replicability of the prediction in datasets with a vitamin D
intervention by ITGA5

Three PubMed pathways related to vitamin D were overrepre-
sented by FN-TERT [84], ITGA5-ITGB1 [85,86], and ITGA5-ITGB1-
ITGB3 (Table B.7) [86]. Vitamin D3 interferes with cell adhesion
to FN1 and downregulates TERT related to cell growth [84], and
decreases radiation-induced upregulation of ITGA5-ITGB1 [85],
which is related to immune, vascular, and internal organs in vita-
min D deficiency [86]. All of the vitamin D-related pathways were
identified in the shortest paths that connected ITGA5 to surrogate
transcripts in the PC-GBM model (Figs. 4 and 5). Vitamin D supple-
mentation was associated with a reduced risk of preeclampsia
based on 27 randomized-controlled trials (OR 0.37, 95 % CI 0.26
to 0.52; I2 0 %) [87]. The effect of vitamin D on the risk of
preeclampsia and the regulation of ITGA5 implied that placenta-
tion under the predicted events by terminal branch A (Fig. 4) can-
not be considered normal, as previously proposed [2]. Vitamin D
probably ameliorates dysregulated placentation under polymicro-
bial infection and platelet-related responses, which may be classi-
fied as the first subclass of preeclampsia, as a precondition to other
subclasses [56]. Because vitamin D may interfere with the process
leading to the precondition subclass, the PC-GBM was not well-
replicated in datasets with a vitamin D intervention.

4.8. Target-tissue surrogate modeling avoids false biomarkers due to
endothelial dysfunction

Preeclampsia is a two-stage disorder consisted of both placental
and endothelial dysfunction [2]. Each stage of preeclampsia shares
a common mechanism with other conditions, e.g., FGR [12] and
severe COVID-19 [4]. Sharing a common mechanism among condi-
tions is even more abundant in those with endothelial dysfunction
[88]. To some extent, both dysfunction should be measurable by a
biomarker in order to specifically predict preeclampsia. However,
clinical manifestation of preeclampsia only occurs at the end of
pregnancy in which endothelial dysfunction dominantly occurs
[1]. This leads to a biomarker discovery that targets only endothe-
lial dysfunction to pursue clinical application. It also prefers a
blood biomarker, since the majority of other tissues cannot be
accessed without invasive methods to obtain a tissue-specific
biomarker.

To solve the tissue accessibility problem, a whole-blood tran-
scriptome could be utilized to predict �60 % tissue-specific tran-
scriptome on average across 32 tissues for six complex diseases,
including hypertension [89]. We applied this proven concept in
this study. To the best of our knowledge, there is no previous study
that predict gene expression in tissues at maternal-fetal interface
using blood transcriptome, including that for preeclampsia. By
blood-derived surrogate transcriptome of maternal-fetal interface,
we may expect a blood biomarker discovery that targets both pla-
cental and endothelial dysfunction; thus, a specific prediction for
preeclampsia can be achieved.

To develop the surrogate model, we assumed a health condition
as a body response to a cause by either physiological or pathophys-
iological mechanism. For example, an early stage of diabetes mel-
litus type II still possesses a normal or physiological response of
insulin to an increased blood glucose level [90]. Meanwhile, this
health condition also has an impaired or pathophysiological
response of cells to insulin. The surrogate model targeted a physi-
ological response or change in blood, that was connected to that in
a target tissue. This may not capture a body response under
preeclampsia, if the physiological connection between blood and
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a target tissue does not retain in the pathological condition of
interest. However, we could confirm the connection by predictive
modeling of preeclampsia using the surrogate transcriptome.

To target the connection, we determined DEGs which reflect
tradeoff of gene expressions between blood and a target tissue.
Yet, a gene in a target tissue at individual level may or may not dif-
ferentially expressed. This was predicted by the surrogate model
using gene expressions in blood. By cross-validated PCs, we esti-
mated blood genes that represented a target-tissue gene. Similar
approach had been conducted [89], but we applied elastic net
instead of least absolute shrinkage and selection operator (LASSO)
regression. The latter algorithm has a larger bias for predictor
selection in high-correlation, low-dimensional settings [91]. The
surrogate model was low dimensional, since target-tissue gene
expression was predicted by using only a few PCs. Since these were
latent variables determined by the same genes but differentially
weighted, the PCs may also be highly correlated among them. In
addition, unlike the previous study [89], we also corrected multiple
testing effect and compared ours with other methods of predictor
discovery by a permutation test. This was expected to avoid false
discovery of a predictor, which likely occurs in high-dimensional
settings [92].
4.9. Strengths and limitations

The proposed method of predictor discovery in this study iden-
tified blood transcripts that were not extremely-expressed genes,
but these could predict preeclampsia but not COVID-19 infections,
and were guided to derive transcripts in condition-specific tissues.
This result could not be achieved by standard pipelines, although
these pipelines used datasets before the pandemic. Conversely,
the previous gene set [30] used in this study could not significantly
discover eligible biomarkers, although genes were discovered by
standard pipelines during the pandemic and also validated by a
dataset before that time. Taken together, these findings demon-
strated that the proposed method could discover predictors of a
condition among others that shared common pathophysiological
derangement in endothelial dysfunction.

However, there are several limitations of this study. Validation
by RT-qPCR should be conducted for the proposed biomarkers and
their surrogate genes. A larger sample size is needed to allow
development of a more-accurate and more-generalized prediction
model using these biomarkers. To avoid excessive costs, early pre-
dictions and low-cost preliminary predictions, e.g., utilizing elec-
tronic health records [11], would be preferred. The performance
of the combined prediction should be validated, and its impact
should be evaluated. Nevertheless, this study provided extensive
screening of potential blood biomarkers that could predict
preeclampsia but not COVID-19 infection which disrupted previ-
ously established biomarkers for preeclampsia [4,5]. It is costly to
experimentally screen many biomarkers, and it is also not scalable
to identify biomarkers by only interpreting previous studies. Utiliz-
ing shared datasets and annotation databases, we could resolve
those problems, particularly in such a way as to avoid false discov-
eries due to endothelial dysfunction.
5. Conclusions

A PC-GBM model using the blood-derived surrogate transcrip-
tome could replicate the predictive performance in an independent
dataset without an intervention unlike models with algorithms
using the blood transcriptome. The PC-GBM model could predict
both early- and late-onset preeclampsia. From this model, we iden-
tified ITGA5, IRF6, and P2RX7 as potential blood biomarkers to pre-
dict preeclampsia but not COVID-19 infection, that represent the
4222
surrogate transcriptome of maternal-fetal interface tissues. By
modeling the blood-derived surrogate transcriptome in target tis-
sues, the proposed method significantly discovered eligible
biomarkers, outperforming those found by a differential expression
analysis and a previous gene set. Independent validation of the
decision tree of potential biomarkers is needed using RT-qPCR
analyses of maternal blood.

6. Code availability

The analysis codes are available at https://github.com/her-

diantrisufriyana/pest.
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